Evolution semigroups and time operators on Banach spaces

被引:4
作者
Suchanecki, Z. [2 ,3 ]
Gomez-Cubillo, F. [1 ]
机构
[1] Univ Valladolid, Fac Ciencias, Dpto Anal Matemat, E-47011 Valladolid, Spain
[2] Univ Luxembourg, L-1359 Luxembourg, Luxembourg
[3] Univ Opole, Inst Math & Informat, PL-45052 Opole, Poland
关键词
Innovation; Time operator; Banach space; Schauder basis; DYNAMICAL-SYSTEMS;
D O I
10.1016/j.jmaa.2010.05.049
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present new general methods to obtain shift representation of evolution semigroups defined on Banach spaces We introduce the notion of time operator associated with a generalized shift on a Banach space and give some conditions under which time operators can be defined on an arbitrary Banach space. We also tackle the problem of scaling of time operators and obtain a general result about the existence of time operators on Banach spaces satisfying some geometric conditions. The last part of the paper contains some examples of explicit constructions of time operators on function spaces. (C) 2010 Elsevier Inc All rights reserved.
引用
收藏
页码:454 / 464
页数:11
相关论文
共 23 条
  • [1] [Anonymous], 1977, CLASSICAL BANACH SPA
  • [2] [Anonymous], 1982, Lecture Notes in Mathematics
  • [3] Antoniou I, 2003, PROG NONLIN, V55, P13
  • [4] Antoniou I, 2002, ADV CHEM PHYS, V122, P33
  • [5] Time operators and shift representation of dynamical systems
    Antoniou, I
    Sadovnichii, VA
    Shkarin, SA
    [J]. PHYSICA A, 1999, 269 (2-4): : 299 - 313
  • [6] Non-uniform time operator, chaos and wavelets on the interval
    Antoniou, I
    Suchanecki, Z
    [J]. CHAOS SOLITONS & FRACTALS, 2000, 11 (1-3) : 423 - 435
  • [7] CIESIELSKI Z, 1959, B ACAD POLON SC SMAP, V7, P227
  • [8] CIESIELSKI Z, 1979, COMM MATH TOM SPEC H, V11, P37
  • [9] INTRINSIC IRREVERSIBILITY OF KOLMOGOROV DYNAMICAL-SYSTEMS
    COURBAGE, M
    [J]. PHYSICA A, 1983, 122 (03): : 459 - 482
  • [10] Gevorkyan G G, 1985, MAT ZAMETKI, V38, P523