Influence of Natural Zeolite and Mineral additive on Bacterial Self-healing Concrete: A Review

被引:24
|
作者
Akhtar, J. N. [1 ]
Khan, Rizwan Ahmad [1 ]
Khan, Rehan Ahmad [1 ]
Akhtar, Mohammad Nadeem [2 ]
Nejem, Jamal K. [2 ]
机构
[1] Aligarh Muslim Univ, Dept Civil Engn, Aligarh, Uttar Pradesh, India
[2] Fahad Bin Sultan Univ, Dept Civil Engn, Tabuk, Saudi Arabia
来源
CIVIL ENGINEERING JOURNAL-TEHRAN | 2022年 / 8卷 / 05期
关键词
Micro-cracks; Bio-mineralization; Encapsulation; Self-healing Properties; Calcite Precipitation; COMPRESSIVE STRENGTH; DURABILITY PROPERTIES; CHLORIDE PERMEABILITY; WATER-ABSORPTION; BLENDED CEMENTS; SILICA FUME; PRECIPITATION; CLINOPTILOLITE; AGGREGATE; IMPROVE;
D O I
10.28991/CEJ-2022-08-05-015
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
With time, the development of micro-cracks in concrete is a frequently reported problem in the structures due to the ingress of harmful substances, leading to the degradation of its quality and strength, which ultimately declines the construction. The present work is a review paper based on enhancing the self-healing property of concrete by inducing different bacteria alone or incorporating different mineral additives. It has been seen that various rehabilitated methodologies are in queue to surmount concrete's weaknesses and to increase its strength and durability. The latest methodology includes using non-pathogenic microbes in concrete as Microbial induced Calcium Carbonate Precipitation (MICCP). The property of precipitating calcium carbonate (CaCO3) crystals by their metabolic activities helps repair the cracks in harsh conditions and improve their strength. Ureolytic bacteria like Bacillus pasteurii/Sporosarcina pasteurii, Bacillus subtilis, Bacillus megaterium, etc., have a specific property by which they can excite urea when integrated with a calcium source and help in sealing the cracks by CaCO3 precipitation. Different studies have observed that specimens having a bacterial concentration of 10(5)-10(7) cells/ml with Natural Zeolite (NZ) replacement (10%) represents better interaction of the microstructure of concrete because of the formation of calcium silicate hydrate (CSH) gel. Further, the reduction in CH bond with reduced pore space has also been observed. NZ alone enhances micro-structural property, but it shows CaCo3 precipitation and more densification of microstructure under bacterial combination. XRD also confirms an increase in the calcite composition when the bacterial concentration of 10(5)-10(7) cells/ml is used. The overall properties of standard and high-strength bacterial concrete (10(5)-10(7) cells/ml) with 10% Natural Zeolite replacement can provide a better option for the future of sustained and strong concrete.
引用
收藏
页码:1069 / 1085
页数:17
相关论文
共 50 条
  • [21] Self-Healing Concrete with Crystalline Admixture—A Review
    A Ravitheja
    T Chandra Sekhara Reddy
    C Sashidhar
    Journal of Wuhan University of Technology-Mater. Sci. Ed., 2019, 34 : 1143 - 1154
  • [22] Self-Healing Concrete
    Broek, Anna Vander
    FORBES, 2009, 184 (08): : 46 - +
  • [23] Self-Healing Concrete
    Brownell, Blaine
    ARCHITECT, 2011, 100 (01): : 90 - 90
  • [24] Self-healing Concrete Using Microcapsules Containing Mineral Salts
    Ghaemifard, S.
    Khosravi, H.
    Bamoharram, F. Farash
    Ghannadiasl, A.
    INTERNATIONAL JOURNAL OF ENGINEERING, 2024, 37 (04): : 779 - 793
  • [25] Self-Healing Concrete
    履之
    当代外语研究, 1994, (01) : 1 - 3
  • [26] Inorganic capsule based on expansive mineral for self-healing concrete
    Li, Jinglu
    Guan, Xinchun
    Zhang, Chenchen
    CEMENT & CONCRETE COMPOSITES, 2023, 144
  • [27] Self-healing concrete
    Engineer,
  • [28] Factors and mechanisms affecting the workability and self-healing performance of microbial self-healing concrete: A review
    Zhang, Qinsheng
    Zhang, Ruochen
    STRUCTURES, 2025, 74
  • [29] Self-healing of concrete crack based on modified zeolite immobilizing microorganisms
    Ye, Nansha
    Liu, Zhen
    Wang, Peng
    Sun, Yongshuai
    He, Xiangli
    BIOCHEMICAL ENGINEERING JOURNAL, 2025, 213
  • [30] Experimental investigation on the strength and durability properties of bacterial self-healing recycled aggregate concrete with mineral admixtures
    Rais, Mohd Salman
    Khan, Rizwan Ahmad
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 306