Inference of topology and the nature of synapses, and the flow of information in neuronal networks

被引:8
作者
Borges, F. S. [1 ,2 ]
Lameu, E. L. [3 ]
Iarosz, K. C. [1 ,4 ]
Protachevicz, P. R. [5 ]
Caldas, I. L. [1 ]
Viana, R. L. [6 ]
Macau, E. E. N. [7 ]
Batista, A. M. [1 ,4 ,8 ]
Baptista, M. S. [4 ]
机构
[1] Univ Sao Paulo, Phys Inst, BR-05508090 Sao Paulo, SP, Brazil
[2] Fed Univ ABC, Ctr Math Computat & Cognit, BR-09606045 Sao Bernardo Do Campo, SP, Brazil
[3] Natl Inst Space Res, BR-12227010 Sao Jose Dos Campos, SP, Brazil
[4] Univ Aberdeen, SUPA, Inst Complex Syst & Math Biol, Aberdeen AB24 3FX, Scotland
[5] Univ Estadual Ponta Grossa, Postgrad Sci, BR-84030900 Ponta Grossa, PR, Brazil
[6] Univ Fed Parana, Phys Dept, BR-81531980 Curitiba, Parana, Brazil
[7] Univ Fed Sao Paulo, BR-12231280 Sao Jose Dos Campos, SP, Brazil
[8] Univ Estadual Ponta Grossa, Math & Stat Dept, BR-84030900 Ponta Grossa, PR, Brazil
基金
英国工程与自然科学研究理事会; 巴西圣保罗研究基金会;
关键词
CAENORHABDITIS-ELEGANS; DIRECTED COHERENCE; GRANGER CAUSALITY; NEURAL-NETWORK; MODEL; CELLS;
D O I
10.1103/PhysRevE.97.022303
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The characterization of neuronal connectivity is one of the most important matters in neuroscience. In this work, we show that a recently proposed informational quantity, the causal mutual information, employed with an appropriate methodology, can be used not only to correctly infer the direction of the underlying physical synapses, but also to identify their excitatory or inhibitory nature, considering easy to handle and measure bivariate time series. The success of our approach relies on a surprising property found in neuronal networks by which nonadjacent neurons do "understand" each other (positive mutual information), however, this exchange of information is not capable of causing effect (zero transfer entropy). Remarkably, inhibitory connections, responsible for enhancing synchronization, transfer more information than excitatory connections, known to enhance entropy in the network. We also demonstrate that our methodology can be used to correctly infer directionality of synapses even in the presence of dynamic and observational Gaussian noise, and is also successful in providing the effective directionality of intermodular connectivity, when only mean fields can be measured.
引用
收藏
页数:7
相关论文
共 41 条
[1]   On directed information theory and Granger causality graphs [J].
Amblard, Pierre-Olivier ;
Michel, Olivier J. J. .
JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2011, 30 (01) :7-16
[2]   Radial basis function approach to nonlinear Granger causality of time series [J].
Ancona, N ;
Marinazzo, D ;
Stramaglia, S .
PHYSICAL REVIEW E, 2004, 70 (05) :7-1
[3]   Synchronization in complex networks [J].
Arenas, Alex ;
Diaz-Guilera, Albert ;
Kurths, Jurgen ;
Moreno, Yamir ;
Zhou, Changsong .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 469 (03) :93-153
[4]   Partial directed coherence:: a new concept in neural structure determination [J].
Baccalá, LA ;
Sameshima, K .
BIOLOGICAL CYBERNETICS, 2001, 84 (06) :463-474
[5]   Network biology:: Understanding the cell's functional organization [J].
Barabási, AL ;
Oltvai, ZN .
NATURE REVIEWS GENETICS, 2004, 5 (02) :101-U15
[6]   Emergence of scaling in random networks [J].
Barabási, AL ;
Albert, R .
SCIENCE, 1999, 286 (5439) :509-512
[7]   A Tutorial Review of Functional Connectivity Analysis Methods and Their Interpretational Pitfalls [J].
Bastos, Andre M. ;
Schoffelen, Jan-Mathijs .
FRONTIERS IN SYSTEMS NEUROSCIENCE, 2016, 9
[8]   Successful network inference from time-series data using mutual information rate [J].
Bianco-Martinez, E. ;
Rubido, N. ;
Antonopoulos, Ch. G. ;
Baptista, M. S. .
CHAOS, 2016, 26 (04)
[9]  
Bianco-Martinez E., ARXIV161205023V1
[10]  
Bianco-Martinez E. J., 2015, THESIS