Weighted Collaborative Sparse and L1/2 Low-Rank Regularizations With Superpixel Segmentation for Hyperspectral Unmixing

被引:30
作者
Sun, Le [1 ,2 ,3 ]
Wu, Feiyang [4 ]
He, Chengxun [4 ]
Zhan, Tianming [5 ]
Liu, Wei [6 ]
Zhang, Daopan [7 ]
机构
[1] Nanjing Univ Informat Sci & Technol NUIST, Sch Comp & Software, Nanjing 210044, Peoples R China
[2] NUIST, Jiangsu Collaborat Innovat Ctr Atmospher Environm, Nanjing 210044, Peoples R China
[3] Zhengzhou Univ Light Ind, Henan Key Lab Food Safety Data Intelligence, Zhengzhou 450002, Peoples R China
[4] Nanjing Univ Informat Sci & Technol, Sch Comp & Software, Nanjing 210044, Peoples R China
[5] Nanjing Audit Univ, Sch Informat Engn, Nanjing 211815, Peoples R China
[6] Yangzhou Univ, Sch Informat & Engn, Yangzhou 225009, Jiangsu, Peoples R China
[7] Nanjing Audit Univ, Res Dept, Nanjing 211815, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Correlation; Collaboration; TV; Sparse matrices; Image segmentation; Shape; Libraries; Sparse unmixing; superpixel; weighted collaborative sparse; < italic xmlns:ali="http:; www; niso; org; schemas; ali; 1; 0; xmlns:mml="http:; w3; 1998; Math; MathML" xmlns:xlink="http:; 1999; xlink" xmlns:xsi="http:; 2001; XMLSchema-instance"> L <; italic >?2 low-rank regularization;
D O I
10.1109/LGRS.2020.3019427
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In this letter, using the sparse unmixing framework, a weighted collaborative sparse and low-rank regularization with superpixel segmentation method is proposed for hyperspectral unmixing. The method outlined here first uses superpixel segmentation to obtain local homogeneous regions. The reason for this approach is that the shape and size of superpixels are adaptive, which are better for obtaining homogeneous regions than square patches. Next, the weighted collaborative sparse term and low-rank regularization were utilized to exploit the spatial and spectral correlation of each superpixel. In addition, the smoothness between adjacent pixels is enforced by total variation regularization. Finally, the proposed method and several state-of-the-art methods were tested on two simulated data sets and two real data sets. The results demonstrate the superiority of the method proposed here.
引用
收藏
页数:5
相关论文
共 15 条
  • [1] Ground-based hyperspectral analysis of the urban nightscape
    Alamus, Ramon
    Bara, Salvador
    Corbera, Jordi
    Escofet, Jaume
    Pala, Vicenc
    Pipia, Luca
    Tarda, Anna
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2017, 124 : 16 - 26
  • [2] Collaborative Sparse Regression Using Spatially Correlated Supports-Application to Hyperspectral Unmixing
    Altmann, Yoann
    Pereyra, Marcelo
    Bioucas-Dias, Jose
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (12) : 5800 - 5811
  • [3] Sparse hyperspectral unmixing based on smoothed l0 regularization
    Deng, Chengzhi
    Zhang, Shaoquan
    Wang, Shengqian
    Tian, Wei
    Wu, Zhaoming
    [J]. INFRARED PHYSICS & TECHNOLOGY, 2014, 67 : 306 - 314
  • [4] Low-Rank Tensor Modeling for Hyperspectral Unmixing Accounting for Spectral Variability
    Imbiriba, Tales
    Borsoi, Ricardo Augusto
    Moreira Bermudez, Jose Carlos
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (03): : 1833 - 1842
  • [5] Collaborative Sparse Regression for Hyperspectral Unmixing
    Iordache, Marian-Daniel
    Bioucas-Dias, Jose M.
    Plaza, Antonio
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (01): : 341 - 354
  • [6] Total Variation Spatial Regularization for Sparse Hyperspectral Unmixing
    Iordache, Marian-Daniel
    Bioucas-Dias, Jose M.
    Plaza, Antonio
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2012, 50 (11): : 4484 - 4502
  • [7] Abundance Estimation for Bilinear Mixture Models via Joint Sparse and Low-Rank Representation
    Qu, Qing
    Nasrabadi, Nasser M.
    Tran, Trac D.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (07): : 4404 - 4423
  • [8] Joint Local Abundance Sparse Unmixing for Hyperspectral Images
    Rizkinia, Mia
    Okuda, Masahiro
    [J]. REMOTE SENSING, 2017, 9 (12)
  • [9] Low Rank Component Induced Spatial-Spectral Kernel Method for Hyperspectral Image Classification
    Sun, Le
    Ma, Chenyang
    Chen, Yunjie
    Zheng, Yuhui
    Shim, Hiuk Jae
    Wu, Zebin
    Jeon, Byeungwoo
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2020, 30 (10) : 3829 - 3842
  • [10] Weighted Nonlocal Low-Rank Tensor Decomposition Method for Sparse Unmixing of Hyperspectral Images
    Sun, Le
    Wu, Feiyang
    Zhan, Tianming
    Liu, Wei
    Wang, Jin
    Jeon, Byeungwoo
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 1174 - 1188