Continuous Discrete Sequential Observers for Time-Varying Systems Under Sampling and Input Delays

被引:21
作者
Mazenc, Frederic [1 ]
Malisoff, Michael [2 ]
机构
[1] Univ Paris, EPI DISCO INRIA Saclay, CNRS, Cent Supelec,L2S,UMR 8506, F-91192 Paris, France
[2] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
基金
美国国家科学基金会;
关键词
Observers; Delays; Time-varying systems; Linear systems; Uncertainty; Stability analysis; DC motors; observers; sampling; NONLINEAR-SYSTEMS; STABILIZATION; ROBUSTNESS; DESIGN;
D O I
10.1109/TAC.2019.2930676
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We provide continuous-discrete observers for a large class of time-varying linear systems where the inputs and outputs have sampling and delays, and where the systems and outputs contain uncertainties. We allow the delays in the output and input to differ and to be arbitrarily long. We use the observers to design controls that ensure input-to-state stability, under delays and sampling. The observers and controls have no distributed terms. We illustrate our work in a dc motor model.
引用
收藏
页码:1704 / 1709
页数:6
相关论文
共 19 条
[1]  
Cacace F, 2015, IEEE DECIS CONTR P, P7010, DOI 10.1109/CDC.2015.7403324
[2]   Integrator backstepping control of a brush DC motor turning a robotic load [J].
Dawson, D.M. ;
Carroll, J.J. ;
Schneider, M. .
IEEE Transactions on Control Systems Technology, 1994, 2 (03) :233-244
[3]   HIGH-GAIN ESTIMATION FOR NONLINEAR-SYSTEMS [J].
DEZA, F ;
BUSVELLE, E ;
GAUTHIER, JP ;
RAKOTOPARA, D .
SYSTEMS & CONTROL LETTERS, 1992, 18 (04) :295-299
[4]   Improving continuous-discrete interval observers with application to microalgae-based bioprocesses [J].
Goffaux, G. ;
Wouwer, A. Vande ;
Bernard, O. .
JOURNAL OF PROCESS CONTROL, 2009, 19 (07) :1182-1190
[5]   Robustness of a discrete-time predictor-based controller for time-varying measurement delay [J].
Gonzalez, A. ;
Garcia, P. ;
Albertos, P. ;
Castillo, P. ;
Lozano, R. .
CONTROL ENGINEERING PRACTICE, 2012, 20 (02) :102-110
[6]  
Jazwinski A., 1970, Stochastic Processes and Filtering Theory, V64
[7]   Input-to-state stability for discrete-time nonlinear systems [J].
Jiang, ZP ;
Wang, Y .
AUTOMATICA, 2001, 37 (06) :857-869
[8]   Stabilization of nonlinear delay systems using approximate predictors and high-gain observers [J].
Karafyllis, Iasson ;
Krstic, Miroslav .
AUTOMATICA, 2013, 49 (12) :3623-3631
[9]   Control-relevant discretization of nonlinear systems with time-delay using Taylor-Lie series [J].
Kazantzis, N ;
Chong, KT ;
Park, JH ;
Parlos, AG .
JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2005, 127 (01) :153-159
[10]  
Khalil H. K., 2002, Control of Nonlinear Systems