On a classification of fat bundles over compact homogeneous spaces

被引:2
作者
Bochenski, Maciej [1 ]
Szczepkowska, Anna [1 ]
Tralle, Aleksy [1 ]
Woike, Artur [1 ]
机构
[1] Univ Warmia & Mazury, Dept Math & Comp Sci, Sloneczna 54, PL-10710 Olsztyn, Poland
关键词
Homogeneous space; Fat bundle; G-structure; Invariant connection;
D O I
10.1016/j.difgeo.2016.07.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article deals with fat bundles. Berard-Bergery classified all homogeneous bundles of that type. We ask a question of a possibility to generalize his description in the case of arbitrary G-structures over homogeneous spaces. We obtain necessary conditions for the existence of such bundles. These conditions yield a kind of classification of fat bundles associated with G-structures over compact homogeneous spaces provided that the connection in a G-structure is canonical. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:131 / 141
页数:11
相关论文
共 18 条
[1]   The classification of naturally reductive homogeneous spaces in dimensions n ≤ 6 [J].
Agricola, Ilka ;
Ferreira, Ana Cristina ;
Friedrich, Thomas .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2015, 39 :59-92
[2]  
[Anonymous], 1961, FDN DIFFERENTIAL GEO
[3]  
[Anonymous], 2001, GRADUATE STUDIES MAT
[4]  
B?rard-Bergery L., 1975, COMPOS MATH, V30, P43
[5]  
Besse A. L., 2007, EINSTEIN MANIFOLDS
[6]   On symplectically fat twistor bundles [J].
Bochenski, Maciej ;
Szczepkowska, Anna ;
Tralle, Aleksy ;
Woike, Artur .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2015, 48 (02) :181-194
[7]   UNFLAT CONNECTIONS IN 3-SPHERE BUNDLES OVER S4 [J].
DERDZINSKI, A ;
RIGAS, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1981, 265 (02) :485-493
[8]  
Fine J., ARXIV14070840MATHDG
[9]   Hyperbolic geometry and non-Kahler manifolds with trivial canonical bundle [J].
Fine, Joel ;
Panov, Dmitri .
GEOMETRY & TOPOLOGY, 2010, 14 (03) :1723-1763
[10]   Topological obstructions to fatness [J].
Florit, Luis A. ;
Ziller, Wolfgang .
GEOMETRY & TOPOLOGY, 2011, 15 (02) :891-925