Nonlinear inhomogeneous Fokker-Planck models: Energetic-variational structures and long-time behavior

被引:2
作者
Epshteyn, Yekaterina [1 ]
Liu, Chang [1 ]
Liu, Chun [2 ]
Mizuno, Masashi [3 ]
机构
[1] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
[2] IIT, Dept Appl Math, Chicago, IL 60616 USA
[3] Nihon Univ, Coll Sci & Technol, Dept Math, Tokyo 1018308, Japan
关键词
Nonlinear Fokker-Planck equation; inhomogeneous diffusion; variable mobility; large time asymptotic analysis; entropy methods; free energy; finite-volume solution; DYNAMIC LATTICE MISORIENTATIONS; MEAN-CURVATURE FLOW; GRAIN-BOUNDARIES; MOTION; CONVERGENCE; EQUILIBRIUM; EQUATION;
D O I
10.1142/S0219530522400036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Inspired by the modeling of grain growth in polycrystalline materials, we consider a nonlinear Fokker-Plank model, with inhomogeneous diffusion and with variable mobility parameters. We develop large time asymptotic analysis of such nonstandard models by reformulating and extending the classical entropy method, under the assumption of periodic boundary condition. In addition, illustrative numerical tests are presented to highlight the essential points of the current analytical results and to motivate future analysis.
引用
收藏
页码:1295 / 1356
页数:62
相关论文
共 57 条
[1]  
[Anonymous], 2016, SpringerBriefs in Mathematics
[2]  
[Anonymous], 2003, Sobolev spaces, Pure and Applied Mathematics (Amsterdam)
[3]   On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations [J].
Arnold, A ;
Markowich, P ;
Toscani, G ;
Unterreiter, A .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2001, 26 (1-2) :43-100
[4]  
Baierlein R, 1999, THERMAL PHYS
[5]   Towards a gradient flow for microstructure [J].
Bardsley, Patrick ;
Barmak, Katayun ;
Eggeling, Eva ;
Epshteyn, Yekaterina ;
Kinderlehrer, David ;
Ta'asan, Shlomo .
RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2017, 28 (04) :777-805
[6]   Grain growth and the puzzle of its stagnation in thin films: The curious tale of a tail and an ear [J].
Barmak, K. ;
Eggeling, E. ;
Kinderlehrer, D. ;
Sharp, R. ;
Ta'asan, S. ;
Rollett, A. D. ;
Coffey, K. R. .
PROGRESS IN MATERIALS SCIENCE, 2013, 58 (07) :987-1055
[7]   Critical events, entropy, and the grain boundary character distribution [J].
Barmak, K. ;
Eggeling, E. ;
Emelianenko, M. ;
Epshteyn, Y. ;
Kinderlehrer, D. ;
Sharp, R. ;
Ta'asan, S. .
PHYSICAL REVIEW B, 2011, 83 (13)
[8]  
Barmak K., 2022, ASS WOMEN MATH SERIE
[9]  
BARMAK K., 2009, RENDICONTI MATEMAT 7, V29, P65
[10]   AN ENTROPY BASED THEORY OF THE GRAIN BOUNDARY CHARACTER DISTRIBUTION [J].
Barmak, Katayun ;
Eggeling, Eva ;
Emelianenko, Maria ;
Epshteyn, Yekaterina ;
Kinderlehrer, David ;
Sharp, Richard ;
Ta'asan, Shlomo .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2011, 30 (02) :427-454