Anderson Localization in the Fractional Quantum Hall Effect

被引:10
作者
Pu, Songyang [1 ,2 ]
Sreejith, G. J. [3 ]
Jain, J. K. [1 ]
机构
[1] Penn State Univ, Dept Phys, 104 Davey Lab, University Pk, PA 16802 USA
[2] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England
[3] Indian Inst Sci Educ & Res, Pune 411008, Maharashtra, India
关键词
DENSITY-OF-STATES; SCALING THEORY; COMPOSITE FERMIONS; TRANSITION; PERCOLATION; FLUX;
D O I
10.1103/PhysRevLett.128.116801
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The interplay between interaction and disorder-induced localization is of fundamental interest. This article addresses localization physics in the fractional quantum Hall state, where both interaction and disorder have nonperturbative consequences. We provide compelling theoretical evidence that the localization of a single quasiparticle of the fractional quantum Hall state at filling factor v = n/(2n + 1) has a striking quantitative correspondence to the localization of a single electron in the (n + 1)th Landau level. By analogy to the dramatic experimental manifestations of Anderson localization in integer quantum Hall effect, this leads to predictions in the fractional quantum Hall regime regarding the existence of extended states at a critical energy, and the nature of the divergence of the localization length as this energy is approached. Within a mean field approximation, these results can be extended to situations where a finite density of quasiparticles is present.
引用
收藏
页数:6
相关论文
共 50 条
[41]   Fractional quantum Hall effect of a rapidly rotating gas of ultracold bosonic atoms [J].
Ammar, M. Ahmed ;
Boucherf, S. .
LOW TEMPERATURE PHYSICS, 2024, 50 (07) :519-522
[42]   Quantum Hall effect of two-component bosons at fractional and integral fillings [J].
Wu, Ying-Hai ;
Jain, Jainendra K. .
PHYSICAL REVIEW B, 2013, 87 (24)
[43]   Numerical studies of the Pfaffian model of the ν=5/2 fractional quantum Hall effect [J].
Toke, Csaba ;
Regnault, Nicolas ;
Jain, Jainendra K. .
SOLID STATE COMMUNICATIONS, 2007, 144 (12) :504-511
[44]   Spin transition in the fractional quantum Hall regime: Effect of the extent of the wave function [J].
Vanovsky, V. V. ;
Khrapai, V. S. ;
Shashkin, A. A. ;
Pellegrini, V. ;
Sorba, L. ;
Biasiol, G. .
PHYSICAL REVIEW B, 2013, 87 (08)
[45]   Parametrization and thermodynamic scaling of pair correlation functions for the fractional quantum Hall effect [J].
Fulsebakke, Jorgen ;
Fremling, Mikael ;
Moran, Niall ;
Slingerland, J. K. .
SCIPOST PHYSICS, 2023, 14 (06)
[46]   Nonlinear optics in the fractional quantum Hall regime [J].
Knuppel, Patrick ;
Ravets, Sylvain ;
Kroner, Martin ;
Falt, Stefan ;
Wegscheider, Werner ;
Imamoglu, Atac .
NATURE, 2019, 572 (7767) :91-+
[47]   Fractional quantum Hall valley ferromagnetism in the extreme quantum limit [J].
Hossain, Md Shafayat ;
Ma, Meng K. ;
Chung, Y. J. ;
Singh, S. K. ;
Gupta, A. ;
West, K. W. ;
Baldwin, K. W. ;
Pfeiffer, L. N. ;
Winkler, R. ;
Shayegan, M. .
PHYSICAL REVIEW B, 2022, 106 (20)
[48]   Double roton-minima in bosonic fractional quantum Hall states [J].
Indra, Moumita ;
Jain, Deepak ;
Mondal, Sandip .
PHYSICA SCRIPTA, 2023, 98 (06)
[49]   Delocalization and Universality of the Fractional Quantum Hall Plateau-to-Plateau Transitions [J].
Madathil, P. T. ;
Rosales, K. A. Villegas ;
Tai, C. T. ;
Chung, Y. J. ;
Pfeiffer, L. N. ;
West, K. W. ;
Baldwin, K. W. ;
Shayegan, M. .
PHYSICAL REVIEW LETTERS, 2023, 130 (22)
[50]   Two-component parton fractional quantum Hall state in graphene [J].
Wu, Ying-Hai .
PHYSICAL REVIEW B, 2022, 106 (15)