Structural evolution in A ≈ 100 nuclei within the mapped interacting boson model based on the Gogny energy density functional

被引:82
|
作者
Nomura, K. [1 ,2 ]
Rodriguez-Guzman, R. [3 ]
Robledo, L. M. [4 ]
机构
[1] Univ Zagreb, Fac Sci, Dept Phys, HR-10000 Zagreb, Croatia
[2] Univ Tsukuba, Ctr Computat Sci, Tsukuba, Ibaraki 3058577, Japan
[3] Kuwait Univ, Dept Phys, Kuwait 13060, Kuwait
[4] Univ Autonoma Madrid, Dept Fis Teor, E-28049 Madrid, Spain
关键词
NEUTRON-STAR DENSITIES; SELF-CONSISTENT; SHELL-MODEL; MEAN-FIELD; SKYRME PARAMETRIZATION; ATOMIC-NUCLEI; MO ISOTOPES; ZR; DEFORMATIONS; SUBNUCLEAR;
D O I
10.1103/PhysRevC.94.044314
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
The structure of even-even neutron-rich Ru, Mo, Zr, and Sr nuclei in the A approximate to 100 mass region is studied within the interacting boson model (IBM) with microscopic input from the self-consistent mean-field approximation based on the Gogny-D1M energy density functional. The deformation-energy surface in the quadrupole deformation space (beta,gamma), computed within the constrained Hartree-Fock-Bogoliubov framework, is mapped onto the expectation value of the appropriately chosen IBM Hamiltonian with configuration mixing in the boson condensate state. The mapped IBM Hamiltonian is used to study the spectroscopic properties of Ru98-114, Mo96-112, Zr94-110, and Sr92-108. Several cases of gamma-soft behavior are predicted in Ru and Mo nuclei while a pronounced coexistence between strongly prolate and weakly oblate deformed shapes is found for Zr and Sr nuclei. The method describes well the evolution of experimental yrast and nonyrast states as well as selected B(E2) transition probabilities.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Structural evolution in germanium and selenium nuclei within the mapped interacting boson model based on the Gogny energy density functional
    Nomura, K.
    Rodriguez-Guzman, R.
    Robledo, L. M.
    PHYSICAL REVIEW C, 2017, 95 (06)
  • [2] Description of odd-mass nuclei within the interacting boson-fermion model based on the Gogny energy density functional
    Nomura, K.
    Rodriguez-Guzman, R.
    Robledo, L. M.
    PHYSICAL REVIEW C, 2017, 96 (01)
  • [3] Shape evolution and the role of intruder configurations in Hg isotopes within the interacting boson model based on a Gogny energy density functional
    Nomura, K.
    Rodriguez-Guzman, R.
    Robledo, L. M.
    PHYSICAL REVIEW C, 2013, 87 (06):
  • [4] β decay of odd-A nuclei with the interacting boson-fermion model based on the Gogny energy density functional
    Nomura, K.
    Rodriguez-Guzman, R.
    Robledo, L. M.
    PHYSICAL REVIEW C, 2020, 101 (02)
  • [5] Structural evolution in Pt isotopes with the interacting boson model Hamiltonian derived from the Gogny energy density functional
    Nomura, K.
    Otsuka, T.
    Rodriguez-Guzman, R.
    Robledo, L. M.
    Sarriguren, P.
    PHYSICAL REVIEW C, 2011, 83 (01):
  • [6] Shape transitions in odd-mass γ-soft nuclei within the interacting boson-fermion model based on the Gogny energy density functional
    Nomura, K.
    Rodriguez-Guzman, R.
    Robledo, L. M.
    PHYSICAL REVIEW C, 2017, 96 (06)
  • [7] Spectroscopy of odd-odd nuclei within the interacting boson-fermion-fermion model based on the Gogny energy-density functional
    Nomura, K.
    Rodriguez-Guzman, R.
    Robledo, L. M.
    PHYSICAL REVIEW C, 2019, 99 (03)
  • [8] Structure of krypton isotopes within the interacting boson model derived from the Gogny energy density functional
    Nomura, K.
    Rodriguez-Guzman, R.
    Humadi, Y. M.
    Robledo, L. M.
    Abusara, H.
    PHYSICAL REVIEW C, 2017, 96 (03)
  • [9] Shape coexistence in lead isotopes in the interacting boson model with a Gogny energy density functional
    Nomura, K.
    Rodriguez-Guzman, R.
    Robledo, L. M.
    Shimizu, N.
    PHYSICAL REVIEW C, 2012, 86 (03):
  • [10] Octupole correlations in light actinides from the interacting boson model based on the Gogny energy density functional
    Nomura, K.
    Rodriguez-Guzman, R.
    Humadi, Y. M.
    Robledo, L. M.
    Garcia-Ramos, J. E.
    PHYSICAL REVIEW C, 2020, 102 (06)