Strict Lyapunov functions for impulsive hybrid time-varying systems with discontinuous right-hand side

被引:1
作者
Mu, Xiaowu [1 ]
Tang, Fengjun [1 ]
机构
[1] Zhengzhou Univ, Dept Math, Zhengzhou 450001, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Filippov solution; impulsive hybrid systems; strict Lyapunov functions; STABILITY; STABILIZATION;
D O I
10.1007/s11424-011-7237-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, explicit closed form expressions of nonsmooth strict Lyapunov functions for impulsive hybrid time-varying systems with discontinuous right-hand side is provided. Lyapunov functions are expressed in terms of known nonstrict Lyapunov functions for the dynamics and finite sums of persistency of excitation parameters.
引用
收藏
页码:261 / 270
页数:10
相关论文
共 28 条
[1]   Continuous control-Lyapunov functions for asymptotically controllable time-varying systems [J].
Albertini, F ;
Sontag, ED .
INTERNATIONAL JOURNAL OF CONTROL, 1999, 72 (18) :1630-1641
[2]   Forward completeness, unboundedness observability, and their Lyapunov characterizations [J].
Angeli, D ;
Sontag, ED .
SYSTEMS & CONTROL LETTERS, 1999, 38 (4-5) :209-217
[3]  
[Anonymous], EJDE
[4]  
[Anonymous], 1988, Differential Equations with Discontinuous Righthand Sides
[5]  
BACCIOTTI A, 2002, P 41 IEEE C DEC CONT
[6]  
Bainov D.D., 1996, DYNAMIC SYSTEMS APPL, V5, P145
[7]  
Bainov D.D., 1997, KUMAMOTO J MATH, V10, P1
[8]   Optimal control of volterra equations with impulses [J].
Belbas, SA ;
Schmidt, WH .
APPLIED MATHEMATICS AND COMPUTATION, 2005, 166 (03) :696-723
[9]  
Bressan A, 2008, DISCRETE CONT DYN-A, V20, P1
[10]  
FILIPPOV AF, 1998, AM MATH SOC TRANSL, V42, P191