Asymmetric Weighted Logistic Metric Learning for Hyperspectral Target Detection

被引:49
作者
Dong, Yanni [1 ,2 ,3 ,4 ]
Shi, Wenzhong [5 ]
Du, Bo [6 ]
Hu, Xiangyun [7 ]
Zhang, Liangpei [8 ]
机构
[1] China Univ Geosci, Inst Geophys & Geomat, Hubei Subsurface Multiscale Imaging Key Lab, Wuhan 430074, Peoples R China
[2] Anhui Univ, Key Lab Intelligent Comp & Signal Proc, Minist Educ, Hefei 230601, Peoples R China
[3] Xidian Univ, State Key Lab Integrated Serv Networks, Xian 710071, Peoples R China
[4] Hong Kong Polytech Univ, Dept Land Surveying & Geoinformat, Hong Kong, Peoples R China
[5] Hong Kong Polytech Univ, Smart Cities Res Inst, Dept Land Surveying & Geoinformat, Hong Kong, Peoples R China
[6] Wuhan Univ, Sch Comp Sci, Wuhan 430079, Peoples R China
[7] China Univ Geosci, Inst Geophys & Geomat, Wuhan 430074, Peoples R China
[8] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
Object detection; Measurement; Hyperspectral imaging; Training; Logistics; Task analysis; Linear programming; Hyperspectral imagery (HSI); metric learning; target detection; ADAPTIVE RADAR DETECTION; DETECTION ALGORITHMS; IMAGE; CLASSIFICATION; SPARSE;
D O I
10.1109/TCYB.2021.3070909
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Traditional target detection methods assume that the background spectrum is subject to the Gaussian distribution, which may only perform well under certain conditions. In addition, traditional target detection methods suffer from the problem of the unbalanced number of target and background samples. To solve these problems, this study presents a novel target detection method based on asymmetric weighted logistic metric learning (AWLML). We first construct a logistic metric-learning approach as an objective function with a positive semidefinite constraint to learn the metric matrix from a set of labeled samples. Then, an asymmetric weighted strategy is provided to emphasize the unbalance between the number of target and background samples. Finally, an accelerated proximal gradient method is applied to identify the global minimum value. Extensive experiments on three challenging hyperspectral datasets demonstrate that the proposed AWLML algorithm improves the state-of-the-art target detection performance.
引用
收藏
页码:11093 / 11106
页数:14
相关论文
共 60 条
[1]  
[Anonymous], 2008, WORKSH FAC REAL LIF
[2]   An efficient method for clustered multi-metric learning [J].
Bac Nguyen ;
Ferri, Francesc J. ;
Morell, Carlos ;
De Baets, Bernard .
INFORMATION SCIENCES, 2019, 471 :149-163
[3]   A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems [J].
Beck, Amir ;
Teboulle, Marc .
SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (01) :183-202
[4]   Hybrid detectors for subpixel targets [J].
Broadwater, Joshua ;
Chellappa, Rama .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2007, 29 (11) :1891-1903
[5]  
Chang CI, 2001, INT GEOSCI REMOTE SE, P2355, DOI 10.1109/IGARSS.2001.978000
[6]   Real-time processing algorithms for target detection and classification in hyperspectral imagery [J].
Chang, CI ;
Ren, H ;
Chiang, SS .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2001, 39 (04) :760-768
[7]   On the Statistical Invariance for Adaptive Radar Detection in Partially Homogeneous Disturbance Plus Structured Interference [J].
Ciuonzo, Domenico ;
De Maio, Antonio ;
Orlando, Danilo .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (05) :1222-1234
[8]   A Unifying Framework for Adaptive Radar Detection in Homogeneous Plus Structured Interference-Part II: Detectors Design [J].
Ciuonzo, Domenico ;
De Maio, Antonio ;
Orlando, Danilo .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2016, 64 (11) :2907-2919
[9]  
Dhillon IS, 2007, IEEE T PATTERN ANAL, V29, P1944, DOI [10.1109/TPAMI.2007.1115, 10.1109/TP'AMI.2007.1115]
[10]   Spectral-Spatial Weighted Kernel Manifold Embedded Distribution Alignment for Remote Sensing Image Classification [J].
Dong, Yanni ;
Liang, Tianyang ;
Zhang, Yuxiang ;
Du, Bo .
IEEE TRANSACTIONS ON CYBERNETICS, 2021, 51 (06) :3185-3197