North SEAL: a new dataset of sea level changes in the North Sea from satellite altimetry

被引:9
作者
Dettmering, Denise [1 ]
Mueller, Felix L. [1 ]
Oelsmann, Julius [1 ]
Passaro, Marcello [1 ]
Schwatke, Christian [1 ]
Restano, Marco [2 ]
Benveniste, Jerome [3 ]
Seitz, Florian [1 ]
机构
[1] Tech Univ Munchen DGFI TUM, Deutsch Geodat Forschungsinst, Arcisstr 21, D-80333 Munich, Germany
[2] SERCO, ESRIN, Frascati, Italy
[3] European Space Agcy ESA ESRIN, Frascati, Italy
关键词
STATE BIAS; COASTAL; VARIABILITY; OCEAN; RISE; RETRACKER; TRENDS; RECORD; MODEL; ZONE;
D O I
10.5194/essd-13-3733-2021
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Information on sea level and its temporal and spatial variability is of great importance for various scientific, societal, and economic issues. This article reports about a new sea level dataset for the North Sea (named North SEAL) of monthly sea level anomalies (SLAs), absolute sea level trends, and amplitudes of the mean annual sea level cycle over the period 1995-2019. Uncertainties and quality flags are provided together with the data. The dataset has been created from multi-mission cross-calibrated altimetry data preprocessed with coastal dedicated approaches and gridded with an innovative least-squares procedure including an advanced outlier detection to a 6-8 km wide triangular mesh. The comparison of SLAs and tide gauge time series shows good consistency, with average correlations of 0.85 and maximum correlations of 0.93. The improvement with respect to existing global gridded altimetry solutions amounts to 8 %-10 %, and it is most pronounced in complicated coastal environments such as river mouths or regions sheltered by islands. The differences in trends at tide gauge locations depend on the vertical land motion model used to correct relative sea level trends. The best consistency with a median difference of 0.04 +/- 1.15 mm yr(-1) is reached by applying a recent glacial isostatic adjustment (GIA) model. With the presented sea level dataset, for the first time, a regionally optimized product for the entire North Sea is made available. It will enable further investigations of ocean processes, sea level projections, and studies on coastal adaptation measures.
引用
收藏
页码:3733 / 3753
页数:21
相关论文
共 70 条
[31]   GPD plus Wet Tropospheric Corrections for CryoSat-2 and GFO Altimetry Missions [J].
Joana Fernandes, M. ;
Lazaro, Clara .
REMOTE SENSING, 2016, 8 (10)
[32]   A revised acceleration rate from the altimetry-derived global mean sea level record [J].
Kleinherenbrink, Marcel ;
Riva, Riccardo ;
Scharroo, Remko .
SCIENTIFIC REPORTS, 2019, 9 (1)
[33]  
Koch KR., 1999, PARAMETER ESTIMATION, DOI [10.1007/978-3-662-03976-2, DOI 10.1007/978-3-662-03976-2]
[34]   VMF3/GPT3: refined discrete and empirical troposphere mapping functions [J].
Landskron, Daniel ;
Boehm, Johannes .
JOURNAL OF GEODESY, 2018, 92 (04) :349-360
[35]   An improved and homogeneous altimeter sea level record from the ESA Climate Change Initiative [J].
Legeais, Jean-Francois ;
Ablain, Michael ;
Zawadzki, Lionel ;
Zuo, Hao ;
Johannessen, Johnny A. ;
Scharffenberg, Martin G. ;
Fenoglio-Marc, Luciana ;
Fernandes, M. Joana ;
Andersen, Ole Baltazar ;
Rudenko, Sergei ;
Cipollini, Paolo ;
Quartly, Graham D. ;
Passaro, Marcello ;
Cazenave, Anny ;
Benveniste, Jerome .
EARTH SYSTEM SCIENCE DATA, 2018, 10 (01) :281-301
[36]  
Lemoine FG, 2015, OSTST 2015 REST VIRG
[37]   FES2014 global ocean tide atlas: design and performance [J].
Lyard, Florent H. ;
Allain, Damien J. ;
Cancet, Mathilde ;
Carrere, Loren ;
Picot, Nicolas .
OCEAN SCIENCE, 2021, 17 (02) :615-649
[38]  
Mitchum G., 2000, MAR GEOD, V23, P145, DOI DOI 10.1080/01490410050128591
[39]  
Muller F. L., SEANOE, DOI [10.17882/79673,2021, DOI 10.17882/79673,2021]
[40]   The zone of influence: matching sea level variability from coastal altimetry and tide gauges for vertical land motion estimation [J].
Oelsmann, Julius ;
Passaro, Marcello ;
Dettmering, Denise ;
Schwatke, Christian ;
Sanchez, Laura ;
Seitz, Florian .
OCEAN SCIENCE, 2021, 17 (01) :35-57