High voltage LIB cathodes enabled by salt-reinforced liquid electrolytes

被引:20
作者
Lu, Yingying [1 ]
Xu, Shaomao [1 ]
Shu, Jonathan [2 ]
Aladat, Wajdi Issam A. [1 ]
Archer, Lynden A. [1 ]
机构
[1] Cornell Univ, Sch Chem & Biomol Engn, Ithaca, NY 14853 USA
[2] Cornell Univ, Cornell Ctr Mat Res, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
Lithium-ion battery; High voltage cathode; Lithium fluoride; LITHIUM; CHALLENGES;
D O I
10.1016/j.elecom.2014.11.010
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
We report on electrochemical properties of Li/Li1.2Ni0.15Co0.1Mn0.55O2 secondary batteries in electrolytes designed to stabilize electrodeposition of lithium. Ethylene carbonate (EC): dimethyl carbonate (DMC) containing a LiPF6/LiF salt blend stabilizes lithium electrodeposition and enables Li/Li1.2Ni0.15Co0.1Mn0.55O2 batteries with a high discharge capacity of 270 mAh.g(-1) at 0.05 mA cm(-2). Cells containing the LiF-reinforced electrolytes also exhibit excellent capacity retention over 500 cycles with Columbic efficiencies approaching 100%. Postmortem SEM analysis of the lithium anode shows more compact deposition in the presence of the LiF salt additive, while XPS depth profile analysis of cathodes show a more uniform distribution of Mn over the first 180 nm from the electrode/electrolyte interface. The results imply that LiF reinforced electrolytes simultaneously facilitate stable lithium electrodeposition and reduce Mn dissolution. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:23 / 26
页数:4
相关论文
共 19 条
[1]   A new class of advanced polymer electrolytes and their relevance in plastic-like, rechargeable lithium batteries [J].
Appetecchi, GB ;
Dautzenberg, G ;
Scrosati, B .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (01) :6-12
[2]  
Archer L.A., 2014, CORNELL U INVENTION, V5016
[3]  
Armand M, 2009, NAT MATER, V8, P621, DOI [10.1038/NMAT2448, 10.1038/nmat2448]
[4]   Solid-Electrolyte Interphase Formation and Electrolyte Reduction at Li-Ion Battery Graphite Anodes: Insights from First-Principles Molecular Dynamics [J].
Ganesh, P. ;
Kent, P. R. C. ;
Jiang, De-en .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (46) :24476-24481
[5]   Synthesis and characterization of Li2MnxFe1-xSiO4 as a cathode material for lithium-ion batteries [J].
Gong, Z. L. ;
Li, Y. X. ;
Yang, Y. .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2006, 9 (12) :A542-A544
[6]   Challenges for Rechargeable Li Batteries [J].
Goodenough, John B. ;
Kim, Youngsik .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :587-603
[7]   High-voltage lithium cathode materials [J].
Kawai, H ;
Nagata, M ;
Tukamoto, H ;
West, AR .
JOURNAL OF POWER SOURCES, 1999, 81 :67-72
[8]   Synthesis and study of new cyclic boronate additives for lithium battery electrolytes [J].
Lee, HS ;
Sun, X ;
Yang, XQ ;
McBreen, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (11) :A1460-A1465
[9]   Synthesis and electrochemical performance of the high voltage cathode material Li[Li0.2Mn0.56Ni0.16Co0.08]O2 with improved rate capability [J].
Li, J. ;
Kloepsch, R. ;
Stan, M. C. ;
Nowak, S. ;
Kunze, M. ;
Winter, M. ;
Passerini, S. .
JOURNAL OF POWER SOURCES, 2011, 196 (10) :4821-4825
[10]  
Lu YY, 2014, NAT MATER, V13, P961, DOI [10.1038/nmat4041, 10.1038/NMAT4041]