Cumulants, lattice paths, and orthogonal polynomials

被引:13
作者
Lehner, F [1 ]
机构
[1] Graz Univ Technol, Inst Math C, A-8010 Graz, Austria
关键词
cumulants; lattice path combinatorics; Motzkin paths; Lukasiewicz paths; continued fractions; Hankel determinants; orthogonal polynomials;
D O I
10.1016/S0012-365X(02)00834-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A formula expressing free cumulants in terms of Jacobi parameters of the corresponding orthogonal polynomials is derived. It combines Flajolet's theory of continued fractions and the Lagrange inversion formula. For the converse we discuss Gessel-Viennot theory to express Hankel determinants in terms of various cumulants. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:177 / 191
页数:15
相关论文
共 29 条
[1]   Interacting Fock spaces and Gaussianization of probability measures [J].
Accardi, L ;
Bozejko, M .
INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 1998, 1 (04) :663-670
[2]   The orthogonal polynomials for a linear sum of a free family of projections [J].
Akiyama, M ;
Yoshida, H .
INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 1999, 2 (04) :627-643
[3]  
[Anonymous], 1973, PROBABILITY INFORM T
[4]  
[Anonymous], 1960, T AM MATH SOC, DOI DOI 10.1090/S0002-9947-1960-0114765-9
[5]  
[Anonymous], LECT NOTES MATH
[6]  
Bozejko M, 1996, PAC J MATH, V175, P357
[7]   ORTHOGONAL POLYNOMIALS WITH A CONSTANT RECURSION FORMULA AND AN APPLICATION TO HARMONIC-ANALYSIS [J].
COHEN, JM ;
TRENHOLME, AR .
JOURNAL OF FUNCTIONAL ANALYSIS, 1984, 59 (02) :175-184
[8]   The formal theory of birth-and-death processes, lattice path combinatorics and continued fractions [J].
Flajolet, P ;
Guillemin, F .
ADVANCES IN APPLIED PROBABILITY, 2000, 32 (03) :750-778
[9]  
FLAJOLET P, 1980, DISCRETE MATH, V32, P125, DOI 10.1016/0012-365X(80)90050-3
[10]  
GERL P, 1984, LECT NOTES MATH, V1064, P131