Jacobi elliptic function solutions for two variant Boussinesq equations

被引:107
作者
Lü, D [1 ]
机构
[1] Beijing Inst Civil Engn & Architecture, Dept Basic Sci, Beijing 100044, Peoples R China
关键词
D O I
10.1016/j.chaos.2004.09.085
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A general Jacobi elliptic function expansion method is proposed to construct abundant Jacobi elliptic function (doubly periodic) solutions for two variant Boussinesq equations., These Jacobi elliptic function solutions degenerate to the soliton wave solutions and trigonometric function solutions at a certain limit condition. (c) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1373 / 1385
页数:13
相关论文
共 9 条
[1]   A series of travelling wave solutions for two variant Boussinesq equations in shallow water waves [J].
Fan, EG ;
Hon, YC .
CHAOS SOLITONS & FRACTALS, 2003, 15 (03) :559-566
[2]   New Jacobi elliptic function expansion and new periodic solutions of nonlinear wave equations [J].
Fu, ZT ;
Liu, SK ;
Liu, SD ;
Zhao, Q .
PHYSICS LETTERS A, 2001, 290 (1-2) :72-76
[3]   Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations [J].
Liu, SK ;
Fu, ZT ;
Liu, SD ;
Zhao, Q .
PHYSICS LETTERS A, 2001, 289 (1-2) :69-74
[4]  
MALFLIET W, 1992, AM J PHYS, V60, P65
[5]  
Wang Dongming, 2001, Elimination Methods. Texts Monographs in Symbolic Computation
[6]   SOLITARY WAVE SOLUTIONS FOR VARIANT BOUSSINESQ EQUATIONS [J].
WANG, ML .
PHYSICS LETTERS A, 1995, 199 (3-4) :169-172
[7]   A simple transformation for nonlinear waves [J].
Yan, CT .
PHYSICS LETTERS A, 1996, 224 (1-2) :77-84
[8]   The new extended Jacobian elliptic function expansion algorithm and its applications in nonlinear mathematical physics equations [J].
Yan, ZY .
COMPUTER PHYSICS COMMUNICATIONS, 2003, 153 (02) :145-154
[9]   Extended Jacobian elliptic function algorithm with symbolic computation to construct new doubly-periodic solutions of nonlinear differential equations [J].
Yan, ZY .
COMPUTER PHYSICS COMMUNICATIONS, 2002, 148 (01) :30-42