A Multicenter, Scan-Rescan, Human and Machine Learning CMR Study to Test Generalizability and Precision in Imaging Biomarker Analysis

被引:81
作者
Bhuva, Anish N. [1 ,2 ]
Bai, Wenjia [3 ,4 ]
Lau, Clement [2 ,6 ]
Davies, Rhodri H. [2 ]
Ye, Yang [2 ,7 ]
Bulluck, Heeraj [1 ]
McAlindon, Elisa [8 ,9 ,10 ]
Culotta, Veronica [2 ]
Swoboda, Peter P. [11 ,12 ]
Captur, Gabriella [1 ,2 ]
Treibel, Thomas A. [1 ,2 ]
Augusto, Joao B. [1 ,2 ]
Knott, Kristopher D. [1 ,2 ]
Seraphim, Andreas [1 ,2 ]
Cole, Graham D. [13 ]
Petersen, Steffen E. [2 ,6 ]
Edwards, Nicola C. [14 ,15 ]
Greenwood, John P. [11 ,12 ]
Bucciarelli-Ducci, Chiara [8 ,9 ]
Hughes, Alun D. [1 ]
Rueckert, Daniel [5 ]
Moon, James C. [1 ,2 ]
Manisty, Charlotte H. [1 ,2 ]
机构
[1] UCL, Inst Cardiovasc Sci, London, England
[2] Barts Hlth NHS Trust, Barts Heart Ctr, Dept Cardiovasc Imaging, London, England
[3] Imperial Coll London, Data Sci Inst, South Kensington Campus, London, England
[4] Imperial Coll London, Dept Med, South Kensington Campus, London, England
[5] Imperial Coll London, Dept Comp, South Kensington Campus, London, England
[6] Queen Mary Univ London, NIHR Barts Biomed Res Ctr, William Harvey Res Inst, London, England
[7] Zhejiang Univ, Sir Run Run Shaw Hosp, Dept Cardiol, Hangzhou, Peoples R China
[8] Univ Hosp Bristol NHS Trust, Bristol NIHR Biomed Res Ctr, Bristol Heart Inst, Bristol, Avon, England
[9] Univ Bristol, Bristol, Avon, England
[10] New Cross Hosp, Heart & Lung Ctr, Wolverhampton, England
[11] Univ Leeds, Multidisciplinary Cardiovasc Res Ctr, Leeds, W Yorkshire, England
[12] Univ Leeds, Leeds Inst Cardiovasc & Metab Med, Div Biomed Imaging, Leeds, W Yorkshire, England
[13] Imperial Coll London, Hammersmith Hosp, Natl Heart & Lung Inst, London, England
[14] Auckland City Hosp, Auckland, New Zealand
[15] Univ Birmingham, Inst Cardiovasc Sci, Birmingham, W Midlands, England
基金
英国医学研究理事会; 英国工程与自然科学研究理事会;
关键词
artificial intelligence; image processing; left ventricular remodeling; magnetic resonance imaging cine; ventricular function; CARDIOVASCULAR MAGNETIC-RESONANCE; HEART-FAILURE; CARDIAC MR; VARIABILITY; QUANTIFICATION; SEGMENTATION; CONSENSUS; MASS;
D O I
10.1161/CIRCIMAGING.119.009214
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
BACKGROUND: Automated analysis of cardiac structure and function using machine learning (ML) has great potential, but is currently hindered by poor generalizability. Comparison is traditionally against clinicians as a reference, ignoring inherent human inter- and intraobserver error, and ensuring that ML cannot demonstrate superiority. Measuring precision (scan:rescan reproducibility) addresses this. We compared precision of ML and humans using a multicenter, multi-disease, scan:rescan cardiovascular magnetic resonance data set. METHODS: One hundred ten patients (5 disease categories, 5 institutions, 2 scanner manufacturers, and 2 field strengths) underwent scan:rescan cardiovascular magnetic resonance (96% within one week). After identification of the most precise human technique, left ventricular chamber volumes, mass, and ejection fraction were measured by an expert, a trained junior clinician, and a fully automated convolutional neural network trained on 599 independent multicenter disease cases. Scan:rescan coefficient of variation and 1000 bootstrapped 95% CIs were calculated and compared using mixed linear effects models. RESULTS: Clinicians can be confident in detecting a 9% change in left ventricular ejection fraction, with greater than half of coefficient of variation attributable to intraobserver variation. Expert, trained junior, and automated scan:rescan precision were similar (for left ventricular ejection fraction, coefficient of variation 6.1 [5.2%-7.1%], P=0.2581; 8.3 [5.6%-10.3%], P=0.3653; 8.8 [6.1%-11.1%], P=0.8620). Automated analysis was 186x faster than humans (0.07 versus 13 minutes). CONCLUSIONS: Automated ML analysis is faster with similar precision to the most precise human techniques, even when challenged with real-world scan:rescan data. Assessment of multicenter, multi-vendor, multi-field strength scan:rescan data (available at www.thevolumesresource.com) permits a generalizable assessment of ML precision and may facilitate direct translation of ML to clinical practice.
引用
收藏
页数:11
相关论文
共 27 条
  • [21] Pulse wave velocity is an independent predictor of the longitudinal increase in systolic blood pressure and of incident hypertension in the Baltimore longitudinal study of aging
    Najjar, Samer S.
    Scuteri, Angelo
    Shetty, Veena
    Wright, Jeanette G.
    Muller, Denis C.
    Fleg, Jerome L.
    Spurgeon, Harold P.
    Ferrucci, Luigi
    Lakatta, Edward G.
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2008, 51 (14) : 1377 - 1383
  • [22] NHS England, 2013, STAND CONTR CMR
  • [23] A review of segmentation methods in short axis cardiac MR images
    Petitjean, Caroline
    Dacher, Jean-Nicolas
    [J]. MEDICAL IMAGE ANALYSIS, 2011, 15 (02) : 169 - 184
  • [24] Standardized image interpretation and post processing in cardiovascular magnetic resonance: Society for Cardiovascular Magnetic Resonance (SCMR) Board of Trustees Task Force on Standardized Post Processing
    Schulz-Menger, Jeanette
    Bluemke, David A.
    Bremerich, Jens
    Flamm, Scott D.
    Fogel, Mark A.
    Friedrich, Matthias G.
    Kim, Raymond J.
    von Knobelsdorff-Brenkenhoff, Florian
    Kramer, Christopher M.
    Pennell, Dudley J.
    Plein, Sven
    Nagel, Eike
    [J]. JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE, 2013, 15
  • [25] Quantification of LV function and mass by cardiovascular magnetic resonance: multi-center variability and consensus contours
    Suinesiaputra, Avan
    Bluemke, David A.
    Cowan, Brett R.
    Friedrich, Matthias G.
    Kramer, Christopher M.
    Kwong, Raymond
    Plein, Sven
    Schulz-Menger, Jeanette
    Westenberg, Jos J. M.
    Young, Alistair A.
    Nagel, Eike
    [J]. JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE, 2015, 17
  • [26] A collaborative resource to build consensus for automated left ventricular segmentation of cardiac MR images
    Suinesiaputra, Avan
    Cowan, Brett R.
    Al-Agamy, Ahmed O.
    Elattar, Mustafa A.
    Ayache, Nicholas
    Fahmy, Ahmed S.
    Khalifa, Ayman M.
    Medrano-Gracia, Pau
    Jolly, Marie-Pierre
    Kadish, Alan H.
    Lee, Daniel C.
    Margeta, Jan
    Warfield, Simon K.
    Young, Alistair A.
    [J]. MEDICAL IMAGE ANALYSIS, 2014, 18 (01) : 50 - 62
  • [27] Deep Learning-based Method for Fully Automatic Quantification of Left Ventricle Function from Cine MR Images: A Multivendor, Multicenter Study
    Tao, Qian
    Yan, Wenjun
    Wang, Yuanyuan
    Paiman, Elisabeth H. M.
    Shamonin, Denis P.
    Garg, Pankaj
    Plein, Sven
    Huang, Lu
    Xia, Liming
    Sramko, Marek
    Tintera, Jarsolav
    de Roos, Albert
    Lamb, Hildo J.
    van der Geest, Rob J.
    [J]. RADIOLOGY, 2019, 290 (01) : 81 - 88