A Multicenter, Scan-Rescan, Human and Machine Learning CMR Study to Test Generalizability and Precision in Imaging Biomarker Analysis

被引:83
作者
Bhuva, Anish N. [1 ,2 ]
Bai, Wenjia [3 ,4 ]
Lau, Clement [2 ,6 ]
Davies, Rhodri H. [2 ]
Ye, Yang [2 ,7 ]
Bulluck, Heeraj [1 ]
McAlindon, Elisa [8 ,9 ,10 ]
Culotta, Veronica [2 ]
Swoboda, Peter P. [11 ,12 ]
Captur, Gabriella [1 ,2 ]
Treibel, Thomas A. [1 ,2 ]
Augusto, Joao B. [1 ,2 ]
Knott, Kristopher D. [1 ,2 ]
Seraphim, Andreas [1 ,2 ]
Cole, Graham D. [13 ]
Petersen, Steffen E. [2 ,6 ]
Edwards, Nicola C. [14 ,15 ]
Greenwood, John P. [11 ,12 ]
Bucciarelli-Ducci, Chiara [8 ,9 ]
Hughes, Alun D. [1 ]
Rueckert, Daniel [5 ]
Moon, James C. [1 ,2 ]
Manisty, Charlotte H. [1 ,2 ]
机构
[1] UCL, Inst Cardiovasc Sci, London, England
[2] Barts Hlth NHS Trust, Barts Heart Ctr, Dept Cardiovasc Imaging, London, England
[3] Imperial Coll London, Data Sci Inst, South Kensington Campus, London, England
[4] Imperial Coll London, Dept Med, South Kensington Campus, London, England
[5] Imperial Coll London, Dept Comp, South Kensington Campus, London, England
[6] Queen Mary Univ London, NIHR Barts Biomed Res Ctr, William Harvey Res Inst, London, England
[7] Zhejiang Univ, Sir Run Run Shaw Hosp, Dept Cardiol, Hangzhou, Peoples R China
[8] Univ Hosp Bristol NHS Trust, Bristol NIHR Biomed Res Ctr, Bristol Heart Inst, Bristol, Avon, England
[9] Univ Bristol, Bristol, Avon, England
[10] New Cross Hosp, Heart & Lung Ctr, Wolverhampton, England
[11] Univ Leeds, Multidisciplinary Cardiovasc Res Ctr, Leeds, W Yorkshire, England
[12] Univ Leeds, Leeds Inst Cardiovasc & Metab Med, Div Biomed Imaging, Leeds, W Yorkshire, England
[13] Imperial Coll London, Hammersmith Hosp, Natl Heart & Lung Inst, London, England
[14] Auckland City Hosp, Auckland, New Zealand
[15] Univ Birmingham, Inst Cardiovasc Sci, Birmingham, W Midlands, England
基金
英国工程与自然科学研究理事会; 英国医学研究理事会;
关键词
artificial intelligence; image processing; left ventricular remodeling; magnetic resonance imaging cine; ventricular function; CARDIOVASCULAR MAGNETIC-RESONANCE; HEART-FAILURE; CARDIAC MR; VARIABILITY; QUANTIFICATION; SEGMENTATION; CONSENSUS; MASS;
D O I
10.1161/CIRCIMAGING.119.009214
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
BACKGROUND: Automated analysis of cardiac structure and function using machine learning (ML) has great potential, but is currently hindered by poor generalizability. Comparison is traditionally against clinicians as a reference, ignoring inherent human inter- and intraobserver error, and ensuring that ML cannot demonstrate superiority. Measuring precision (scan:rescan reproducibility) addresses this. We compared precision of ML and humans using a multicenter, multi-disease, scan:rescan cardiovascular magnetic resonance data set. METHODS: One hundred ten patients (5 disease categories, 5 institutions, 2 scanner manufacturers, and 2 field strengths) underwent scan:rescan cardiovascular magnetic resonance (96% within one week). After identification of the most precise human technique, left ventricular chamber volumes, mass, and ejection fraction were measured by an expert, a trained junior clinician, and a fully automated convolutional neural network trained on 599 independent multicenter disease cases. Scan:rescan coefficient of variation and 1000 bootstrapped 95% CIs were calculated and compared using mixed linear effects models. RESULTS: Clinicians can be confident in detecting a 9% change in left ventricular ejection fraction, with greater than half of coefficient of variation attributable to intraobserver variation. Expert, trained junior, and automated scan:rescan precision were similar (for left ventricular ejection fraction, coefficient of variation 6.1 [5.2%-7.1%], P=0.2581; 8.3 [5.6%-10.3%], P=0.3653; 8.8 [6.1%-11.1%], P=0.8620). Automated analysis was 186x faster than humans (0.07 versus 13 minutes). CONCLUSIONS: Automated ML analysis is faster with similar precision to the most precise human techniques, even when challenged with real-world scan:rescan data. Assessment of multicenter, multi-vendor, multi-field strength scan:rescan data (available at www.thevolumesresource.com) permits a generalizable assessment of ML precision and may facilitate direct translation of ML to clinical practice.
引用
收藏
页数:11
相关论文
共 27 条
[21]   Pulse wave velocity is an independent predictor of the longitudinal increase in systolic blood pressure and of incident hypertension in the Baltimore longitudinal study of aging [J].
Najjar, Samer S. ;
Scuteri, Angelo ;
Shetty, Veena ;
Wright, Jeanette G. ;
Muller, Denis C. ;
Fleg, Jerome L. ;
Spurgeon, Harold P. ;
Ferrucci, Luigi ;
Lakatta, Edward G. .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2008, 51 (14) :1377-1383
[22]  
NHS England, 2013, STAND CONTR CMR
[23]   A review of segmentation methods in short axis cardiac MR images [J].
Petitjean, Caroline ;
Dacher, Jean-Nicolas .
MEDICAL IMAGE ANALYSIS, 2011, 15 (02) :169-184
[24]   Standardized image interpretation and post processing in cardiovascular magnetic resonance: Society for Cardiovascular Magnetic Resonance (SCMR) Board of Trustees Task Force on Standardized Post Processing [J].
Schulz-Menger, Jeanette ;
Bluemke, David A. ;
Bremerich, Jens ;
Flamm, Scott D. ;
Fogel, Mark A. ;
Friedrich, Matthias G. ;
Kim, Raymond J. ;
von Knobelsdorff-Brenkenhoff, Florian ;
Kramer, Christopher M. ;
Pennell, Dudley J. ;
Plein, Sven ;
Nagel, Eike .
JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE, 2013, 15
[25]   Quantification of LV function and mass by cardiovascular magnetic resonance: multi-center variability and consensus contours [J].
Suinesiaputra, Avan ;
Bluemke, David A. ;
Cowan, Brett R. ;
Friedrich, Matthias G. ;
Kramer, Christopher M. ;
Kwong, Raymond ;
Plein, Sven ;
Schulz-Menger, Jeanette ;
Westenberg, Jos J. M. ;
Young, Alistair A. ;
Nagel, Eike .
JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE, 2015, 17
[26]   A collaborative resource to build consensus for automated left ventricular segmentation of cardiac MR images [J].
Suinesiaputra, Avan ;
Cowan, Brett R. ;
Al-Agamy, Ahmed O. ;
Elattar, Mustafa A. ;
Ayache, Nicholas ;
Fahmy, Ahmed S. ;
Khalifa, Ayman M. ;
Medrano-Gracia, Pau ;
Jolly, Marie-Pierre ;
Kadish, Alan H. ;
Lee, Daniel C. ;
Margeta, Jan ;
Warfield, Simon K. ;
Young, Alistair A. .
MEDICAL IMAGE ANALYSIS, 2014, 18 (01) :50-62
[27]   Deep Learning-based Method for Fully Automatic Quantification of Left Ventricle Function from Cine MR Images: A Multivendor, Multicenter Study [J].
Tao, Qian ;
Yan, Wenjun ;
Wang, Yuanyuan ;
Paiman, Elisabeth H. M. ;
Shamonin, Denis P. ;
Garg, Pankaj ;
Plein, Sven ;
Huang, Lu ;
Xia, Liming ;
Sramko, Marek ;
Tintera, Jarsolav ;
de Roos, Albert ;
Lamb, Hildo J. ;
van der Geest, Rob J. .
RADIOLOGY, 2019, 290 (01) :81-88