A Multicenter, Scan-Rescan, Human and Machine Learning CMR Study to Test Generalizability and Precision in Imaging Biomarker Analysis

被引:81
作者
Bhuva, Anish N. [1 ,2 ]
Bai, Wenjia [3 ,4 ]
Lau, Clement [2 ,6 ]
Davies, Rhodri H. [2 ]
Ye, Yang [2 ,7 ]
Bulluck, Heeraj [1 ]
McAlindon, Elisa [8 ,9 ,10 ]
Culotta, Veronica [2 ]
Swoboda, Peter P. [11 ,12 ]
Captur, Gabriella [1 ,2 ]
Treibel, Thomas A. [1 ,2 ]
Augusto, Joao B. [1 ,2 ]
Knott, Kristopher D. [1 ,2 ]
Seraphim, Andreas [1 ,2 ]
Cole, Graham D. [13 ]
Petersen, Steffen E. [2 ,6 ]
Edwards, Nicola C. [14 ,15 ]
Greenwood, John P. [11 ,12 ]
Bucciarelli-Ducci, Chiara [8 ,9 ]
Hughes, Alun D. [1 ]
Rueckert, Daniel [5 ]
Moon, James C. [1 ,2 ]
Manisty, Charlotte H. [1 ,2 ]
机构
[1] UCL, Inst Cardiovasc Sci, London, England
[2] Barts Hlth NHS Trust, Barts Heart Ctr, Dept Cardiovasc Imaging, London, England
[3] Imperial Coll London, Data Sci Inst, South Kensington Campus, London, England
[4] Imperial Coll London, Dept Med, South Kensington Campus, London, England
[5] Imperial Coll London, Dept Comp, South Kensington Campus, London, England
[6] Queen Mary Univ London, NIHR Barts Biomed Res Ctr, William Harvey Res Inst, London, England
[7] Zhejiang Univ, Sir Run Run Shaw Hosp, Dept Cardiol, Hangzhou, Peoples R China
[8] Univ Hosp Bristol NHS Trust, Bristol NIHR Biomed Res Ctr, Bristol Heart Inst, Bristol, Avon, England
[9] Univ Bristol, Bristol, Avon, England
[10] New Cross Hosp, Heart & Lung Ctr, Wolverhampton, England
[11] Univ Leeds, Multidisciplinary Cardiovasc Res Ctr, Leeds, W Yorkshire, England
[12] Univ Leeds, Leeds Inst Cardiovasc & Metab Med, Div Biomed Imaging, Leeds, W Yorkshire, England
[13] Imperial Coll London, Hammersmith Hosp, Natl Heart & Lung Inst, London, England
[14] Auckland City Hosp, Auckland, New Zealand
[15] Univ Birmingham, Inst Cardiovasc Sci, Birmingham, W Midlands, England
基金
英国医学研究理事会; 英国工程与自然科学研究理事会;
关键词
artificial intelligence; image processing; left ventricular remodeling; magnetic resonance imaging cine; ventricular function; CARDIOVASCULAR MAGNETIC-RESONANCE; HEART-FAILURE; CARDIAC MR; VARIABILITY; QUANTIFICATION; SEGMENTATION; CONSENSUS; MASS;
D O I
10.1161/CIRCIMAGING.119.009214
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
BACKGROUND: Automated analysis of cardiac structure and function using machine learning (ML) has great potential, but is currently hindered by poor generalizability. Comparison is traditionally against clinicians as a reference, ignoring inherent human inter- and intraobserver error, and ensuring that ML cannot demonstrate superiority. Measuring precision (scan:rescan reproducibility) addresses this. We compared precision of ML and humans using a multicenter, multi-disease, scan:rescan cardiovascular magnetic resonance data set. METHODS: One hundred ten patients (5 disease categories, 5 institutions, 2 scanner manufacturers, and 2 field strengths) underwent scan:rescan cardiovascular magnetic resonance (96% within one week). After identification of the most precise human technique, left ventricular chamber volumes, mass, and ejection fraction were measured by an expert, a trained junior clinician, and a fully automated convolutional neural network trained on 599 independent multicenter disease cases. Scan:rescan coefficient of variation and 1000 bootstrapped 95% CIs were calculated and compared using mixed linear effects models. RESULTS: Clinicians can be confident in detecting a 9% change in left ventricular ejection fraction, with greater than half of coefficient of variation attributable to intraobserver variation. Expert, trained junior, and automated scan:rescan precision were similar (for left ventricular ejection fraction, coefficient of variation 6.1 [5.2%-7.1%], P=0.2581; 8.3 [5.6%-10.3%], P=0.3653; 8.8 [6.1%-11.1%], P=0.8620). Automated analysis was 186x faster than humans (0.07 versus 13 minutes). CONCLUSIONS: Automated ML analysis is faster with similar precision to the most precise human techniques, even when challenged with real-world scan:rescan data. Assessment of multicenter, multi-vendor, multi-field strength scan:rescan data (available at www.thevolumesresource.com) permits a generalizable assessment of ML precision and may facilitate direct translation of ML to clinical practice.
引用
收藏
页数:11
相关论文
共 27 条
  • [1] [Anonymous], 2009, MIDAS J CARDIAC MR L
  • [2] A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI
    Avendi, M. R.
    Kheradvar, Arash
    Jafarkhani, Hamid
    [J]. MEDICAL IMAGE ANALYSIS, 2016, 30 : 108 - 119
  • [3] Automated cardiovascular magnetic resonance image analysis with fully convolutional networks
    Bai, Wenjia
    Sinclair, Matthew
    Tarroni, Giacomo
    Oktay, Ozan
    Rajchl, Martin
    Vaillant, Ghislain
    Lee, Aaron M.
    Aung, Nay
    Lukaschuk, Elena
    Sanghvi, Mihir M.
    Zemrak, Filip
    Fung, Kenneth
    Paiva, Jose Miguel
    Carapella, Valentina
    Kim, Young Jin
    Suzuki, Hideaki
    Kainz, Bernhard
    Matthews, Paul M.
    Petersen, Steffen E.
    Piechnik, Stefan K.
    Neubauer, Stefan
    Glocker, Ben
    Rueckert, Daniel
    [J]. JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE, 2018, 20
  • [4] Comparison of techniques for the measurement of left ventricular function following cardiac transplantation
    Bellenger, NG
    Marcus, NJ
    Rajappan, K
    Yacoub, M
    Banner, NR
    Pennell, DJ
    [J]. JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE, 2002, 4 (02) : 255 - 263
  • [5] Reduction in sample size for studies of remodeling in heart failure by the use of cardiovascular magnetic resonance
    Bellenger, NG
    Davies, LC
    Francis, JM
    Coats, AJS
    Pennell, DJ
    [J]. JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE, 2000, 2 (04) : 271 - 278
  • [6] Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved?
    Bernard, Olivier
    Lalande, Alain
    Zotti, Clement
    Cervenansky, Frederick
    Yang, Xin
    Heng, Pheng-Ann
    Cetin, Irem
    Lekadir, Karim
    Camara, Oscar
    Gonzalez Ballester, Miguel Angel
    Sanroma, Gerard
    Napel, Sandy
    Petersen, Steffen
    Tziritas, Georgios
    Grinias, Elias
    Khened, Mahendra
    Kollerathu, Varghese Alex
    Krishnamurthi, Ganapathy
    Rohe, Marc-Michel
    Pennec, Xavier
    Sermesant, Maxime
    Isensee, Fabian
    Jaeger, Paul
    Maier-Hein, Klaus H.
    Full, Peter M.
    Wolf, Ivo
    Engelhardt, Sandy
    Baumgartner, Christian F.
    Koch, Lisa M.
    Wolterink, Jelmer M.
    Isgum, Ivana
    Jang, Yeonggul
    Hong, Yoonmi
    Patravali, Jay
    Jain, Shubham
    Humbert, Olivier
    Jodoin, Pierre-Marc
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (11) : 2514 - 2525
  • [7] STATISTICAL METHODS FOR ASSESSING AGREEMENT BETWEEN TWO METHODS OF CLINICAL MEASUREMENT
    BLAND, JM
    ALTMAN, DG
    [J]. LANCET, 1986, 1 (8476) : 307 - 310
  • [8] The Relationship of Left Ventricular Mass and Geometry to Incident Cardiovascular Events
    Bluemke, David A.
    Kronmal, Richard A.
    Lima, Joao A. C.
    Liu, Kiang
    Olson, Jean
    Burke, Gregory L.
    Folsom, Aaron R.
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2008, 52 (25) : 2148 - 2155
  • [9] Community Delivery of Semiautomated Fractal Analysis Tool in Cardiac MR for Trabecular Phenotyping
    Captur, Gabriella
    Radenkovic, Dina
    Li, Chunming
    Liu, Yu
    Aung, Nay
    Zemrak, Filip
    Tobon-Gomez, Catalina
    Gao, Xuexin
    Elliott, Perry M.
    Petersen, Steffen E.
    Bluemke, David A.
    Friedrich, Matthias G.
    Moon, James C.
    [J]. JOURNAL OF MAGNETIC RESONANCE IMAGING, 2017, 46 (04) : 1082 - 1088
  • [10] Comparison of interstudy reproducibility of cardiovascular magnetic resonance with two-dimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy
    Grothues, F
    Smith, GC
    Moon, JCC
    Bellenger, NG
    Collins, P
    Klein, HU
    Pennell, DJ
    [J]. AMERICAN JOURNAL OF CARDIOLOGY, 2002, 90 (01) : 29 - 34