A Multicenter, Scan-Rescan, Human and Machine Learning CMR Study to Test Generalizability and Precision in Imaging Biomarker Analysis

被引:83
作者
Bhuva, Anish N. [1 ,2 ]
Bai, Wenjia [3 ,4 ]
Lau, Clement [2 ,6 ]
Davies, Rhodri H. [2 ]
Ye, Yang [2 ,7 ]
Bulluck, Heeraj [1 ]
McAlindon, Elisa [8 ,9 ,10 ]
Culotta, Veronica [2 ]
Swoboda, Peter P. [11 ,12 ]
Captur, Gabriella [1 ,2 ]
Treibel, Thomas A. [1 ,2 ]
Augusto, Joao B. [1 ,2 ]
Knott, Kristopher D. [1 ,2 ]
Seraphim, Andreas [1 ,2 ]
Cole, Graham D. [13 ]
Petersen, Steffen E. [2 ,6 ]
Edwards, Nicola C. [14 ,15 ]
Greenwood, John P. [11 ,12 ]
Bucciarelli-Ducci, Chiara [8 ,9 ]
Hughes, Alun D. [1 ]
Rueckert, Daniel [5 ]
Moon, James C. [1 ,2 ]
Manisty, Charlotte H. [1 ,2 ]
机构
[1] UCL, Inst Cardiovasc Sci, London, England
[2] Barts Hlth NHS Trust, Barts Heart Ctr, Dept Cardiovasc Imaging, London, England
[3] Imperial Coll London, Data Sci Inst, South Kensington Campus, London, England
[4] Imperial Coll London, Dept Med, South Kensington Campus, London, England
[5] Imperial Coll London, Dept Comp, South Kensington Campus, London, England
[6] Queen Mary Univ London, NIHR Barts Biomed Res Ctr, William Harvey Res Inst, London, England
[7] Zhejiang Univ, Sir Run Run Shaw Hosp, Dept Cardiol, Hangzhou, Peoples R China
[8] Univ Hosp Bristol NHS Trust, Bristol NIHR Biomed Res Ctr, Bristol Heart Inst, Bristol, Avon, England
[9] Univ Bristol, Bristol, Avon, England
[10] New Cross Hosp, Heart & Lung Ctr, Wolverhampton, England
[11] Univ Leeds, Multidisciplinary Cardiovasc Res Ctr, Leeds, W Yorkshire, England
[12] Univ Leeds, Leeds Inst Cardiovasc & Metab Med, Div Biomed Imaging, Leeds, W Yorkshire, England
[13] Imperial Coll London, Hammersmith Hosp, Natl Heart & Lung Inst, London, England
[14] Auckland City Hosp, Auckland, New Zealand
[15] Univ Birmingham, Inst Cardiovasc Sci, Birmingham, W Midlands, England
基金
英国工程与自然科学研究理事会; 英国医学研究理事会;
关键词
artificial intelligence; image processing; left ventricular remodeling; magnetic resonance imaging cine; ventricular function; CARDIOVASCULAR MAGNETIC-RESONANCE; HEART-FAILURE; CARDIAC MR; VARIABILITY; QUANTIFICATION; SEGMENTATION; CONSENSUS; MASS;
D O I
10.1161/CIRCIMAGING.119.009214
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
BACKGROUND: Automated analysis of cardiac structure and function using machine learning (ML) has great potential, but is currently hindered by poor generalizability. Comparison is traditionally against clinicians as a reference, ignoring inherent human inter- and intraobserver error, and ensuring that ML cannot demonstrate superiority. Measuring precision (scan:rescan reproducibility) addresses this. We compared precision of ML and humans using a multicenter, multi-disease, scan:rescan cardiovascular magnetic resonance data set. METHODS: One hundred ten patients (5 disease categories, 5 institutions, 2 scanner manufacturers, and 2 field strengths) underwent scan:rescan cardiovascular magnetic resonance (96% within one week). After identification of the most precise human technique, left ventricular chamber volumes, mass, and ejection fraction were measured by an expert, a trained junior clinician, and a fully automated convolutional neural network trained on 599 independent multicenter disease cases. Scan:rescan coefficient of variation and 1000 bootstrapped 95% CIs were calculated and compared using mixed linear effects models. RESULTS: Clinicians can be confident in detecting a 9% change in left ventricular ejection fraction, with greater than half of coefficient of variation attributable to intraobserver variation. Expert, trained junior, and automated scan:rescan precision were similar (for left ventricular ejection fraction, coefficient of variation 6.1 [5.2%-7.1%], P=0.2581; 8.3 [5.6%-10.3%], P=0.3653; 8.8 [6.1%-11.1%], P=0.8620). Automated analysis was 186x faster than humans (0.07 versus 13 minutes). CONCLUSIONS: Automated ML analysis is faster with similar precision to the most precise human techniques, even when challenged with real-world scan:rescan data. Assessment of multicenter, multi-vendor, multi-field strength scan:rescan data (available at www.thevolumesresource.com) permits a generalizable assessment of ML precision and may facilitate direct translation of ML to clinical practice.
引用
收藏
页数:11
相关论文
共 27 条
[1]  
[Anonymous], 2009, MIDAS J CARDIAC MR L
[2]   A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI [J].
Avendi, M. R. ;
Kheradvar, Arash ;
Jafarkhani, Hamid .
MEDICAL IMAGE ANALYSIS, 2016, 30 :108-119
[3]   Automated cardiovascular magnetic resonance image analysis with fully convolutional networks [J].
Bai, Wenjia ;
Sinclair, Matthew ;
Tarroni, Giacomo ;
Oktay, Ozan ;
Rajchl, Martin ;
Vaillant, Ghislain ;
Lee, Aaron M. ;
Aung, Nay ;
Lukaschuk, Elena ;
Sanghvi, Mihir M. ;
Zemrak, Filip ;
Fung, Kenneth ;
Paiva, Jose Miguel ;
Carapella, Valentina ;
Kim, Young Jin ;
Suzuki, Hideaki ;
Kainz, Bernhard ;
Matthews, Paul M. ;
Petersen, Steffen E. ;
Piechnik, Stefan K. ;
Neubauer, Stefan ;
Glocker, Ben ;
Rueckert, Daniel .
JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE, 2018, 20
[4]   Comparison of techniques for the measurement of left ventricular function following cardiac transplantation [J].
Bellenger, NG ;
Marcus, NJ ;
Rajappan, K ;
Yacoub, M ;
Banner, NR ;
Pennell, DJ .
JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE, 2002, 4 (02) :255-263
[5]   Reduction in sample size for studies of remodeling in heart failure by the use of cardiovascular magnetic resonance [J].
Bellenger, NG ;
Davies, LC ;
Francis, JM ;
Coats, AJS ;
Pennell, DJ .
JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE, 2000, 2 (04) :271-278
[6]   Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved? [J].
Bernard, Olivier ;
Lalande, Alain ;
Zotti, Clement ;
Cervenansky, Frederick ;
Yang, Xin ;
Heng, Pheng-Ann ;
Cetin, Irem ;
Lekadir, Karim ;
Camara, Oscar ;
Gonzalez Ballester, Miguel Angel ;
Sanroma, Gerard ;
Napel, Sandy ;
Petersen, Steffen ;
Tziritas, Georgios ;
Grinias, Elias ;
Khened, Mahendra ;
Kollerathu, Varghese Alex ;
Krishnamurthi, Ganapathy ;
Rohe, Marc-Michel ;
Pennec, Xavier ;
Sermesant, Maxime ;
Isensee, Fabian ;
Jaeger, Paul ;
Maier-Hein, Klaus H. ;
Full, Peter M. ;
Wolf, Ivo ;
Engelhardt, Sandy ;
Baumgartner, Christian F. ;
Koch, Lisa M. ;
Wolterink, Jelmer M. ;
Isgum, Ivana ;
Jang, Yeonggul ;
Hong, Yoonmi ;
Patravali, Jay ;
Jain, Shubham ;
Humbert, Olivier ;
Jodoin, Pierre-Marc .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (11) :2514-2525
[7]   STATISTICAL METHODS FOR ASSESSING AGREEMENT BETWEEN TWO METHODS OF CLINICAL MEASUREMENT [J].
BLAND, JM ;
ALTMAN, DG .
LANCET, 1986, 1 (8476) :307-310
[8]   The Relationship of Left Ventricular Mass and Geometry to Incident Cardiovascular Events [J].
Bluemke, David A. ;
Kronmal, Richard A. ;
Lima, Joao A. C. ;
Liu, Kiang ;
Olson, Jean ;
Burke, Gregory L. ;
Folsom, Aaron R. .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2008, 52 (25) :2148-2155
[9]   Community Delivery of Semiautomated Fractal Analysis Tool in Cardiac MR for Trabecular Phenotyping [J].
Captur, Gabriella ;
Radenkovic, Dina ;
Li, Chunming ;
Liu, Yu ;
Aung, Nay ;
Zemrak, Filip ;
Tobon-Gomez, Catalina ;
Gao, Xuexin ;
Elliott, Perry M. ;
Petersen, Steffen E. ;
Bluemke, David A. ;
Friedrich, Matthias G. ;
Moon, James C. .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2017, 46 (04) :1082-1088
[10]   Comparison of interstudy reproducibility of cardiovascular magnetic resonance with two-dimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy [J].
Grothues, F ;
Smith, GC ;
Moon, JCC ;
Bellenger, NG ;
Collins, P ;
Klein, HU ;
Pennell, DJ .
AMERICAN JOURNAL OF CARDIOLOGY, 2002, 90 (01) :29-34