An improved fast fuzzy c-means using crow search optimization algorithm for crop identification in agricultural

被引:60
作者
Anter, Ahmed M. [1 ]
Hassenian, Aboul Ella [2 ,4 ]
Oliva, Diego [3 ,4 ]
机构
[1] Beni Suef Univ, Fac Comp & Informat, Bani Suwayf 62511, Egypt
[2] Cairo Univ, Fac Comp & Informat, Cairo, Egypt
[3] Univ Guadalajara, Dept Elect, Guadalajara, Jalisco, Mexico
[4] SRGE, Cairo, Egypt
关键词
SWARM OPTIMIZATION; IMAGES; WEEDS; CLASSIFICATION; SEGMENTATION; PERFORMANCE; PARAMETERS; SYSTEM;
D O I
10.1016/j.eswa.2018.10.009
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this article is introduced an improved version of Fast Fuzzy C-Means (FFCM) by using the Crow Search optimization Algorithm (CSA) for the task of data clustering. In the proposed version of the FFCM the CSA is employed to find the centroids of the clusters that provide more accurate results in the clustering process. In this sense, the CSA avoids that the FFCM get stuck in local minima and increases the computational performance. The main feature of the CSA is its ability to find the global solution in complex optimization problems with the calibration of a reduced amount of parameter. This fact reduces the sensibility in the iterative process and permits the FFCM use the best centroids. To verify the efficiency of the proposed FFCM in a real problem, it is applied for the identification of maize plants in images from crop fields. The process starts using the adaptive colour histogram equalization to enhance the contrast and adjusts the intensities of crop images. The next task consists in to obtain the green index that is used by the CSA to compute the centroids for the FFCM algorithm. To evaluate the performance of the presented approach, it has been tested over a set of images from maize fields with different degrees of complexity, captured by different cameras and with a different perspective of the scene. Different metrics and a statistical analysis evidence that the proposed algorithm obtains better segmentation results in comparison with other methods. The experimental results proved that the proposed approach is capable of finding the optimal centroid values of the FFCM and avoids the local optima problem. Moreover, the FFCM based on CSA method can locate crop rows with the maximum accuracy as possible in digital images. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:340 / 354
页数:15
相关论文
共 44 条
[1]   Classification of crops and weeds from digital images: A support vector machine approach [J].
Ahmed, Faisal ;
Al-Mamun, Hawlader Abdullah ;
Bari, A. S. M. Hossain ;
Hossain, Emam ;
Kwan, Paul .
CROP PROTECTION, 2012, 40 :98-104
[2]  
Ali AR, 2014, ADV COMPU INTELL ROB, P1, DOI 10.4018/978-1-4666-6030-4.ch001
[3]  
Allahverdipour A., 2018, J ADV COMPUTER RES, V9, P37
[4]   A hybrid crow search algorithm for solving the DNA fragment assembly problem [J].
Allaoui, Mohcin ;
Ahiod, Belaid ;
El Yafrani, Mohamed .
EXPERT SYSTEMS WITH APPLICATIONS, 2018, 102 :44-56
[5]  
[Anonymous], INFORM RETRIEVAL DAT
[6]  
[Anonymous], ELECT IMAGING FEBRUA
[7]   Computational intelligence optimization approach based on particle swarm optimizer and neutrosophic set for abdominal CT liver tumor segmentation [J].
Anter, Ahmed M. ;
Hassenian, Aboul Ella .
JOURNAL OF COMPUTATIONAL SCIENCE, 2018, 25 :376-387
[8]   Neutrosophic Sets and Fuzzy C-Means Clustering for Improving CT Liver Image Segmentation [J].
Anter, Ahmed M. ;
Hassanien, Aboul Ella ;
Abu ElSoud, Mohamed A. ;
Tolba, Mohamed F. .
PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON INNOVATIONS IN BIO-INSPIRED COMPUTING AND APPLICATIONS (IBICA 2014), 2014, 303 :193-203
[9]   An instance-based learning approach for thresholding in crop images under different outdoor conditions [J].
Arroyo, Javier ;
Guijarro, Maria ;
Pajares, Gonzalo .
COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2016, 127 :669-679
[10]   A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm [J].
Askarzadeh, Alireza .
COMPUTERS & STRUCTURES, 2016, 169 :1-12