Cosmic ray small-scale anisotropies in quasi-linear theory

被引:8
作者
Mertsch, P. [1 ,2 ,3 ]
Ahlers, M. [2 ,3 ]
机构
[1] Rhein Westfal TH Aachen, Inst Theoret Particle Phys & Cosmol TTK, D-52056 Aachen, Germany
[2] Niels Bohr Int Acad, Blegdamsvej 17, DK-2100 Copenhagen, Denmark
[3] Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-2100 Copenhagen, Denmark
来源
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS | 2019年 / 11期
关键词
cosmic ray theory; galactic magnetic fields; DIFFUSION; TURBULENCE; PARTICLES; TRANSPORT;
D O I
10.1088/1475-7516/2019/11/048
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The distribution of arrival directions of cosmic rays is remarkably isotropic, which is a consequence of their repeated scattering in magnetic fields. Yet, high-statistics observatories like IceCube and HAWC have revealed the presence of small-scale structures at levels of 1 part in 10,000 at hundreds of TeV, which are not expected in typical diffusion models of cosmic rays. We follow up on the suggestion that these small-scale anisotropies are a result of cosmic ray streaming in a particular realisation of the turbulent magnetic field within a few scattering lengths in our local Galactic neighbourhood. So far, this hypothesis has been investigated mostly numerically, by tracking test particles through turbulent magnetic fields. For the first time, we present an analytical computation that through a perturbative approach allows predicting the angular power spectrum of cosmic ray arrival directions for a given model of turbulence. We illustrate this method for a simple, isotropic turbulence model and we find remarkable agreement with the results of numerical studies.
引用
收藏
页数:12
相关论文
共 17 条
[1]   Observation of Anisotropy of TeV Cosmic Rays with Two Years of HAWC [J].
Abeysekara, A. U. ;
Alfaro, R. ;
Alvarez, C. ;
Alvarez, J. D. ;
Arceo, R. ;
Arteaga-Velazquez, J. C. ;
Avila Rojas, D. ;
Ayala Solares, H. A. ;
Becerril, A. ;
Belmont-Moreno, E. ;
BenZvi, S. Y. ;
Bernal, A. ;
Braun, J. ;
Caballero-Mora, K. S. ;
Capistran, T. ;
Carraminana, A. ;
Casanova, S. ;
Castillo, M. ;
Cotti, U. ;
Cotzomi, J. ;
De Leon, C. ;
De la Fuente, E. ;
Diaz Hernandez, R. ;
Dichiara, S. ;
Dingus, B. L. ;
DuVernois, M. A. ;
Diaz-Velez, J. C. ;
Engel, K. ;
Fiorino, D. W. ;
Fraija, N. ;
Garcia-Gonzalez, J. A. ;
Garfias, F. ;
Gonzalez Munoz, A. ;
Gonzalez, M. M. ;
Goodman, J. A. ;
Hampel-Arias, Z. ;
Harding, J. P. ;
Hernandez, S. ;
Hona, B. ;
Hueyotl-Zahuantitla, F. ;
Hui, C. M. ;
Huntemeyer, P. ;
Iriarte, A. ;
Jardin-Blicq, A. ;
Joshi, V ;
Kaufmann, S. ;
Lara, A. ;
Lauer, R. J. ;
Lee, W. H. ;
Leon Vargas, H. .
ASTROPHYSICAL JOURNAL, 2018, 865 (01)
[2]   Origin of small-scale anisotropies in Galactic cosmic rayse [J].
Ahlers, Markus ;
Mertsch, Philipp .
PROGRESS IN PARTICLE AND NUCLEAR PHYSICS, 2017, 94 :184-216
[3]   SMALL-SCALE ANISOTROPIES OF COSMIC RAYS FROM RELATIVE DIFFUSION [J].
Ahlers, Markus ;
Mertsch, Philipp .
ASTROPHYSICAL JOURNAL LETTERS, 2015, 815 (01)
[4]   Anomalous Anisotropies of Cosmic Rays from Turbulent Magnetic Fields [J].
Ahlers, Markus .
PHYSICAL REVIEW LETTERS, 2014, 112 (02)
[5]   Transport of cosmic rays in chaotic magnetic fields [J].
Casse, F ;
Lemoine, M ;
Pelletier, G .
PHYSICAL REVIEW D, 2002, 65 (02)
[6]   Interstellar turbulence I: Observations and processes [J].
Elmegreen, BG ;
Scalo, J .
ANNUAL REVIEW OF ASTRONOMY AND ASTROPHYSICS, 2004, 42 :211-273
[7]  
Frisch U., 1968, Probabilistic Methods in Applied Mathematics, V1, P75
[8]   Large-scale Cosmic-Ray Anisotropy as a Probe of Interstellar Turbulence [J].
Giacinti, Gwenael ;
Kirk, John G. .
ASTROPHYSICAL JOURNAL, 2017, 835 (02)
[9]   Local Magnetic Turbulence and TeV-PeV Cosmic Ray Anisotropies [J].
Giacinti, Gwenael ;
Sigl, Guenter .
PHYSICAL REVIEW LETTERS, 2012, 109 (07)
[10]   DIFFUSION SCATTERING AND ACCELERATION OF PARTICLES BY STOCHASTIC ELECTROMAGNETIC FIELDS [J].
HALL, DE ;
STURROCK, PA .
PHYSICS OF FLUIDS, 1967, 10 (12) :2620-&