A New Distance in Pattern Clustering on Longitudinal Data

被引:0
作者
Liu, Yi [1 ]
Luo, Nian-long [1 ]
机构
[1] Tsinghua Univ, Ctr Informat Technol, Beijing 100084, Peoples R China
来源
2014 INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE, ELECTRONICS AND ELECTRICAL ENGINEERING (ISEEE), VOLS 1-3 | 2014年
关键词
trajectory; pattern clustering; longitudinal data; distance; ALGORITHM;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Clustering as an unsupervised learning method is still an effective way for pattern analysis on longitudinal data. Because of the characteristics of pattern clustering on longitudinal data, accumulated minor noise and data shifting, the traditional distance for clustering algorithm based on partitioning, such as Euclidean distance, could not perform very well. A new distance for partitioning clustering algorithm, Max-Difference distance, is proposed to solve these problems which could not be solved by Euclidean distance. According to the result of three experiments, Max-Difference shows its effectiveness for longitudinal data and proves that it can work well for pattern clustering on longitudinal data.
引用
收藏
页码:971 / 975
页数:5
相关论文
共 50 条
  • [21] CONDITIONAL FUNCTIONAL CLUSTERING FOR LONGITUDINAL DATA WITH HETEROGENEOUS NONLINEAR PATTERNS
    Wang, Tianhao
    Yu, Lei
    Leurgans, Sue E.
    Wilson, Robert S.
    Bennett, David A.
    Boyle, Patricia A.
    ANNALS OF APPLIED STATISTICS, 2022, 16 (02) : 1191 - 1214
  • [22] Functional clustering methods for binary longitudinal data with temporal heterogeneity
    Sohn, Jinwon
    Jeong, Seonghyun
    Cho, Young Min
    Park, Taeyoung
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2023, 185
  • [23] Clustering of longitudinal interval-valued data via mixture distribution under covariance separability
    Park, Seongoh
    Lim, Johan
    Choi, Hyejeong
    Kwak, Minjung
    JOURNAL OF APPLIED STATISTICS, 2020, 47 (10) : 1739 - 1756
  • [24] A Pseudo-EM Algorithm for Clustering Incomplete Longitudinal Data
    Shaikh, Mateen
    McNicholas, Paul D.
    Desmond, Anthony F.
    INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2010, 6 (01)
  • [25] clusterMLD: An Efficient Hierarchical Clustering Method for Multivariate Longitudinal Data
    Zhou, Junyi
    Zhang, Ying
    Tu, Wanzhu
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2023, 32 (03) : 1131 - 1144
  • [26] Distance-based approach in univariate longitudinal data analysis
    Melo, Sandra E.
    Melo, Oscar O.
    JOURNAL OF APPLIED STATISTICS, 2013, 40 (03) : 674 - 692
  • [27] A New Heuristic for the Data Clustering Problem
    Siddiqi, Umair F.
    Sait, Sadiq M.
    IEEE ACCESS, 2017, 5 : 6801 - 6812
  • [28] A new local density and relative distance based spectrum clustering
    Liu, Mingzhe
    He, Mingfu
    Wang, Ruili
    Li, Shaoda
    KNOWLEDGE AND INFORMATION SYSTEMS, 2019, 61 (02) : 965 - 985
  • [29] Robust kernelized approach to clustering by incorporating new distance measure
    Kaur, Prabhjot
    Soni, A. K.
    Gosain, Anjana
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2013, 26 (02) : 833 - 847
  • [30] Effect of distance measures and validity indices on clustering of joint orientation data
    Liu, Jian
    Chen, Liang
    Wang, Chunping
    Li, Yawei
    Wang, Ju
    Yanshilixue Yu Gongcheng Xuebao/Chinese Journal of Rock Mechanics and Engineering, 2015, 34 : 3151 - 3159