A New Distance in Pattern Clustering on Longitudinal Data

被引:0
作者
Liu, Yi [1 ]
Luo, Nian-long [1 ]
机构
[1] Tsinghua Univ, Ctr Informat Technol, Beijing 100084, Peoples R China
来源
2014 INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE, ELECTRONICS AND ELECTRICAL ENGINEERING (ISEEE), VOLS 1-3 | 2014年
关键词
trajectory; pattern clustering; longitudinal data; distance; ALGORITHM;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Clustering as an unsupervised learning method is still an effective way for pattern analysis on longitudinal data. Because of the characteristics of pattern clustering on longitudinal data, accumulated minor noise and data shifting, the traditional distance for clustering algorithm based on partitioning, such as Euclidean distance, could not perform very well. A new distance for partitioning clustering algorithm, Max-Difference distance, is proposed to solve these problems which could not be solved by Euclidean distance. According to the result of three experiments, Max-Difference shows its effectiveness for longitudinal data and proves that it can work well for pattern clustering on longitudinal data.
引用
收藏
页码:971 / 975
页数:5
相关论文
共 19 条
[1]  
Bar-Joseph Z., 2002, P 6 ANN INT C COMP B, P39, DOI DOI 10.1145/565196.565202
[2]   Functional clustering of longitudinal data [J].
Chiou, Jeng-Min ;
Li, Pai-Ling .
FUNCTIONAL AND OPERATORIAL STATISTICS, 2008, :103-+
[3]   Comparisons and validation of statistical clustering techniques for microarray gene expression data [J].
Datta, S ;
Datta, S .
BIOINFORMATICS, 2003, 19 (04) :459-466
[4]   CLUSTER SEPARATION MEASURE [J].
DAVIES, DL ;
BOULDIN, DW .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1979, 1 (02) :224-227
[5]   Model-based clustering for longitudinal data [J].
De la Cruz-Mesia, Rolando ;
Quintanab, Fernando A. ;
Marshall, Guillermo .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (03) :1441-1457
[6]  
Dunn J. C., 1973, Journal of Cybernetics, V3, P32, DOI 10.1080/01969727308546046
[7]  
Elavarasi S A., 2011, learning, V1
[8]  
Gaffney S., 2004, NIPS, P473, DOI DOI 10.5555/2976040.2976100
[9]  
Gaffney S. J., 2004, THESIS CITESEER
[10]  
Gaffney S. J., 2003, P 9 INT WORKSH ART I