Large mass boundary condensation patterns in the stationary Keller-Segel system

被引:22
作者
del Pino, Manuel [1 ]
Pistoia, Angela [2 ]
Vaira, Giusi [2 ]
机构
[1] Univ Chile, Fac Ciencias Fis & Matemat, Dept Ingn Matemat, Casilla 170,Correo 3, Santiago, Chile
[2] Univ Roma La Sapienza, Dipartimento SBAI, Via Antonio Scarpa 16, I-00161 Rome, Italy
关键词
Keller-Segel system; Boundary concentration; PERTURBED NEUMANN PROBLEM; STEADY-STATES; CHEMOTAXIS; CURVES;
D O I
10.1016/j.jde.2016.05.032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the boundary value problem { -Delta u + u = lambda e(u), in Omega partial derivative(v)u = 0 on partial derivative Omega where Omega is a bounded smooth domain in R-2, lambda > 0 and v is the inner normal derivative at partial derivative Omega. This problem is equivalent to the stationary Keller-Segel system from chemotaxis. We establish the existence of a solution u(lambda) which exhibits a sharp boundary layer along the entire boundary partial derivative Omega as lambda -> 0. These solutions have large mass in the sense that integral(Omega) lambda e(u lambda) similar to | log lambda|. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:3414 / 3462
页数:49
相关论文
共 18 条
[1]  
[Anonymous], 2000, Adv. Math. Sci. Appl.
[2]  
Biler P., 1998, Adv. Math. Sci. Appl., V8, P715
[3]   UNIFORM ESTIMATES AND BLOW UP BEHAVIOR FOR SOLUTIONS OF -DELTA-U = V(X)EU IN 2 DIMENSIONS [J].
BREZIS, H ;
MERLE, F .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1991, 16 (8-9) :1223-1253
[4]   NON-LINEAR ASPECTS OF CHEMOTAXIS [J].
CHILDRESS, S ;
PERCUS, JK .
MATHEMATICAL BIOSCIENCES, 1981, 56 (3-4) :217-237
[5]   Concentration on curves for nonlinear Schrodinger equations [J].
Del Pino, Manuel ;
Kowalczyk, Michal ;
Wei, Jun-Cheng .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2007, 60 (01) :113-146
[6]   Collapsing steady states of the Keller-Segel system [J].
del Pino, Manuel ;
Wei, Juncheng .
NONLINEARITY, 2006, 19 (03) :661-684
[7]   Bubbling along boundary geodesics near the second critical exponent [J].
del Pino, Manuel ;
Musso, Monica ;
Pacard, Frank .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2010, 12 (06) :1553-1605
[8]   The Toda system and multiple-end solutions of autonomous planar elliptic problems [J].
del Pino, Manuel ;
Kowalczyk, Michal ;
Pacard, Frank ;
Wei, Juncheng .
ADVANCES IN MATHEMATICS, 2010, 224 (04) :1462-1516
[9]   Radial solutions for the Brezis-Nirenberg problem involving large nonlinearities [J].
Grossi, Massimo .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 254 (12) :2995-3036
[10]   INITIATION OF SLIME MOLD AGGREGATION VIEWED AS AN INSTABILITY [J].
KELLER, EF ;
SEGEL, LA .
JOURNAL OF THEORETICAL BIOLOGY, 1970, 26 (03) :399-&