Hausdorff Dimension of a Class of Weierstrass Functions

被引:0
作者
Ruan, Huojun [1 ]
Zhang, Na [1 ]
机构
[1] Zhejiang Univ, Sch Math Sci, Hangzhou 310027, Zhejiang, Peoples R China
关键词
Hausdorff dimension; Weierstrass function; SRB measure;
D O I
10.4208/ata.OA-SU8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It was proved by Shen that the graph of the classical Weierstrass function Sigma(infinity)(n =0) lambda(n) cos(2 pi b(n)x) has Hausdorff dimension 2 + log lambda/log b, for every integer b >= 2 and every l is an element of(1/b, 1) [Hausdorff dimension of the graph of the classical Weierstrass functions, Math. Z., 289 (2018), 223-266]. In this paper, we prove that the dimension formula holds for every integer b >= 3 and every lambda is an element of(1/b, 1) if we replace the function cos by sin in the definition of Weierstrass function. A class of more general functions are also discussed.
引用
收藏
页码:482 / 496
页数:15
相关论文
共 8 条
[1]   On the dimension of the graph of the classical Weierstrass function [J].
Baranski, Krzysztof ;
Barany, Balazs ;
Romanowska, Julia .
ADVANCES IN MATHEMATICS, 2014, 265 :32-59
[2]   Weierstrass's non-differentiable function [J].
Hardy, G. H. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1916, 17 :301-325
[3]   FRACTAL DIMENSIONS AND SINGULARITIES OF THE WEIERSTRASS TYPE FUNCTIONS [J].
HU, TY ;
LAU, KS .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 335 (02) :649-665
[4]  
Kaplan J.L., 1984, Ergod. Theory Dyn. Syst., V4, P261, DOI [10.1017/S0143385700002431, DOI 10.1017/S0143385700002431]
[5]   A simpler proof for the dimension of the graph of the classical Weierstrass function [J].
Keller, Gerhard .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2017, 53 (01) :169-181
[6]  
Ledrappier F., 1992, Contemp. Math., V135, P285
[7]   Hausdorff dimension of the graphs of the classical Weierstrass functions [J].
Shen, Weixiao .
MATHEMATISCHE ZEITSCHRIFT, 2018, 289 (1-2) :223-266
[8]   Fat solenoidal attractors [J].
Tsujii, M .
NONLINEARITY, 2001, 14 (05) :1011-1027