Comparative transcriptome profiling of the injured zebrafish and mouse hearts identifies miRNA-dependent repair pathways

被引:39
作者
Crippa, Stefania [1 ]
Nemir, Mohamed [1 ]
Ounzain, Samir [1 ]
Ibberson, Mark
Berthonneche, Corinne [2 ,3 ]
Sarre, Alexandre [2 ,3 ]
Boisset, Gaelle [4 ]
Maison, Damien [1 ]
Harshman, Keith [5 ]
Xenarios, Ioannis
Diviani, Dario [6 ]
Schorderet, Daniel [4 ]
Pedrazzini, Thierry [1 ]
机构
[1] Univ Lausanne, Sch Med, Dept Med, Expt Cardiol Unit, CH-1011 Lausanne, Switzerland
[2] Swiss Inst Bioinformat, Lausanne, Switzerland
[3] Univ Lausanne, Cardiovasc Assessment Facil, Lausanne, Switzerland
[4] Inst Res Ophthalmol, Sion, Switzerland
[5] Univ Lausanne, Lausanne Genom Technol Facil, Lausanne, Switzerland
[6] Univ Lausanne, Dept Pharmacol & Toxicol, Lausanne, Switzerland
基金
瑞士国家科学基金会;
关键词
Myocardial infarction; Zebrafish; Mouse; Repair mechanisms; miRNAs; CARDIOMYOCYTE PROLIFERATION; GENE-EXPRESSION; CELL-PROLIFERATION; REGENERATION; MICRORNAS; CRYOINJURY; MIGRATION; MUSCLE; CANCER; GROWTH;
D O I
10.1093/cvr/cvw031
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The adult mammalian heart has poor regenerative capacity. In contrast, the zebrafish heart retains a robust capacity for regeneration into adulthood. These distinct responses are consequences of a differential utilization of evolutionary-conserved gene regulatory networks in the damaged heart. To systematically identify miRNA-dependent networks controlling cardiac repair following injury, we performed comparative gene and miRNA profiling of the cardiac transcriptome in adult mice and zebrafish. Using an integrated approach, we show that 45 miRNA-dependent networks, involved in critical biological pathways, are differentially modulated in the injured zebrafish vs. mouse hearts. We study, more particularly, the miR-26a-dependent response. Therefore, miR-26a is down-regulated in the fish heart after injury, whereas its expression remains constant in the mouse heart. Targets of miR-26a involve activators of the cell cycle and Ezh2, a component of the polycomb repressive complex 2 (PRC2). Importantly, PRC2 exerts repressive functions on negative regulators of the cell cycle. In cultured neonatal cardiomyocytes, inhibition of miR-26a stimulates, therefore, cardiomyocyte proliferation. Accordingly, miR-26a knockdown prolongs the proliferative window of cardiomyocytes in the post-natal mouse heart. This novel strategy identifies a series of miRNAs and associated pathways, in particular miR-26a, which represent attractive therapeutic targets for inducing repair in the injured heart.
引用
收藏
页码:73 / 84
页数:12
相关论文
共 72 条
[21]   MicroRNA-26a Regulates Pathological and Physiological Angiogenesis by Targeting BMP/SMAD1 Signaling [J].
Icli, Basak ;
Wara, A. K. M. ;
Moslehi, Javid ;
Sun, Xinghui ;
Plovie, Eva ;
Cahill, Meghan ;
Marchini, Julio F. ;
Schissler, Andrew ;
Padera, Robert F. ;
Shi, Jianru ;
Cheng, Hui-Wen ;
Raghuram, Srilatha ;
Arany, Zoltan ;
Liao, Ronglih ;
Croce, Kevin ;
MacRae, Calum ;
Feinberg, Mark W. .
CIRCULATION RESEARCH, 2013, 113 (11) :1231-U127
[22]   Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation [J].
Jopling, Chris ;
Sleep, Eduard ;
Raya, Marina ;
Marti, Merce ;
Raya, Angel ;
Izpisua Belmonte, Juan Carlos .
NATURE, 2010, 464 (7288) :606-U168
[23]   Mir-214-Dependent Regulation of the Polycomb Protein Ezh2 in Skeletal Muscle and Embryonic Stem Cells [J].
Juan, Aster H. ;
Kumar, Roshan M. ;
Marx, Joseph G. ;
Young, Richard A. ;
Sartorelli, Vittorio .
MOLECULAR CELL, 2009, 36 (01) :61-74
[24]   Intramyocardial Fibroblast Myocyte Communication [J].
Kakkar, Rahul ;
Lee, Richard T. .
CIRCULATION RESEARCH, 2010, 106 (01) :47-57
[25]   Primary contribution to zebrafish heart regeneration by gata4+ cardiomyocytes [J].
Kikuchi, Kazu ;
Holdway, Jennifer E. ;
Werdich, Andreas A. ;
Anderson, Ryan M. ;
Fang, Yi ;
Egnaczyk, Gregory F. ;
Evans, Todd ;
MacRae, Calum A. ;
Stainier, Didier Y. R. ;
Poss, Kenneth D. .
NATURE, 2010, 464 (7288) :601-U162
[26]   miR-182 is a negative regulator of osteoblast proliferation, differentiation, and skeletogenesis through targeting FoxO1 [J].
Kim, Kyoung Min ;
Park, Su Jin ;
Jung, Seung-Hyun ;
Kim, Eun Jin ;
Jogeswar, Gadi ;
Ajita, Jami ;
Rhee, Yumie ;
Kim, Cheol-Hee ;
Lim, Sung-Kil .
JOURNAL OF BONE AND MINERAL RESEARCH, 2012, 27 (08) :1669-1679
[27]   Therapeutic microRNA Delivery Suppresses Tumorigenesis in a Murine Liver Cancer Model [J].
Kota, Janaiah ;
Chivukula, Raghu R. ;
O'Donnell, Kathryn A. ;
Wentzel, Erik A. ;
Montgomery, Chrystal L. ;
Hwang, Hun-Way ;
Chang, Tsung-Cheng ;
Vivekanandan, Perumal ;
Torbenson, Michael ;
Clark, K. Reed ;
Mendell, Jerry R. ;
Mendell, Joshua T. .
CELL, 2009, 137 (06) :1005-1017
[28]   Cooperative interaction of angiopoietin-like proteins 1 and 2 in zebrafish vascular development [J].
Kubota, Y ;
Oike, Y ;
Satoh, S ;
Tabata, Y ;
Niikura, Y ;
Morisada, T ;
Akao, M ;
Urano, T ;
Ito, Y ;
Miyamoto, T ;
Nagai, N ;
Koh, GY ;
Watanabe, S ;
Suda, T .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (38) :13502-13507
[29]   Both inhibition and enhanced expression of miR-31 lead to reduced migration and invasion of pancreatic cancer cells [J].
Laurila, Eeva M. ;
Sandstrom, Saana ;
Rantanen, Laura M. ;
Autio, Reija ;
Kallioniemi, Anne .
GENES CHROMOSOMES & CANCER, 2012, 51 (06) :557-568
[30]   Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development [J].
Li, FQ ;
Wang, XJ ;
Capasso, JM ;
Gerdes, AM .
JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 1996, 28 (08) :1737-1746