Importance of Li-Metal/Sulfide Electrolyte Interphase Ionic Conductivity in Suppressing Short-Circuiting of All-Solid-State Li-Metal Batteries

被引:12
作者
Suyama, Motoshi [1 ]
Yubuchi, So [1 ]
Deguchi, Minako [1 ]
Sakuda, Atsushi [1 ]
Tatsumisago, Masahiro [1 ]
Hayashi, Akitoshi [1 ]
机构
[1] Osaka Prefecture Univ, Grad Sch Engn, Dept Appl Chem, Naka Ku, Sakai, Osaka 5998531, Japan
关键词
GLASS-CERAMICS; LITHIUM; LI2S-P2S5; INTERFACE; DISSOLUTION; STABILITY; BEHAVIOR; PROGRESS; SYSTEMS; GROWTH;
D O I
10.1149/1945-7111/ac0995
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The electronic and ionic conductivities of the interphase that forms between Li metal and solid electrolytes (SEs) are key parameters in determining battery cell performance. In this study, we evaluated the effect of the interphase on Li dissolution/deposition behaviors. The reduction of Li2S-P2S5 glasses to Li2S and Li3P by Li metal occurred at the Li/SE interface. The Li dissolution/deposition performance at 100 degrees C was improved by increasing the Li3P content in the interphase, and the cell with a Li4P2S6 glass electrolyte functioned without short-circuiting at a current density of 1.3 mA cm(-2). The ionic conductivity of the Li/SE interphase was evaluated by preparing Li-SE compounds using mechanochemical processing. The milled sample prepared from Li metal and Li4P2S6 glass showed a one order of magnitude higher conductivity of 10(-4) S cm(-1) at 100 degrees C than that of the Li-Li3PS4 milled sample, indicating that the ionic conductivity of the interphase formed at the Li/SE interface is an important factor for improving the short-circuiting tolerance of all-solid-state Li-metal batteries.
引用
收藏
页数:6
相关论文
共 41 条
[1]   Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte [J].
Cheng, Eric Jianfeng ;
Sharafi, Asma ;
Sakamoto, Jeff .
ELECTROCHIMICA ACTA, 2017, 223 :85-91
[2]   Micromorphological studies of lithium electrodes in alkyl carbonate solutions using in situ atomic force microscopy [J].
Cohen, YS ;
Cohen, Y ;
Aurbach, D .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (51) :12282-12291
[3]   Exploiting XPS for the identification of sulfides and polysulfides [J].
Fantauzzi, Marzia ;
Elsener, Bernhard ;
Atzei, Davide ;
Rigoldi, Americo ;
Rossi, Antonella .
RSC ADVANCES, 2015, 5 (93) :75953-75963
[4]   Reviving Lithium-Metal Anodes for Next-Generation High-Energy Batteries [J].
Guo, Yanpeng ;
Li, Huiqiao ;
Zhai, Tianyou .
ADVANCED MATERIALS, 2017, 29 (29)
[5]   Highly Utilized Lithium Sulfide Active Material by Enhancing Conductivity in All-solid-state Batteries [J].
Hakari, Takashi ;
Hayashi, Akitoshi ;
Tatsumisago, Masahiro .
CHEMISTRY LETTERS, 2015, 44 (12) :1664-1666
[6]  
Hama S., 2015, US patent, Patent No. [9172112B2, 9172112 9172112]
[7]   Degradation of NASICON-Type Materials in Contact with Lithium Metal: Formation of Mixed Conducting Interphases (MCI) on Solid Electrolytes [J].
Hartmann, Pascal ;
Leichtweiss, Thomas ;
Busche, Martin R. ;
Schneider, Meike ;
Reich, Marisa ;
Sann, Joachim ;
Adelhelm, Philipp ;
Janek, Juergen .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (41) :21064-21074
[8]   Characterization of Li2S-P2S5 glass-ceramics as a solid electrolyte for lithium secondary batteries [J].
Hayashi, A ;
Hama, S ;
Mizuno, F ;
Tadanaga, K ;
Minami, T ;
Tatsumisago, M .
SOLID STATE IONICS, 2004, 175 (1-4) :683-686
[9]   Liquid-phase synthesis of 100Li3PS4-50LiI-xLi3PO4 solid electrolytes [J].
Indrawan, Radian Febi ;
Yamamoto, Tokoharu ;
Huu Huy Phuc Nguyen ;
Muto, Hiroyuki ;
Matsuda, Atsunori .
SOLID STATE IONICS, 2020, 345
[10]   Integrated Interface Strategy toward Room Temperature Solid-State Lithium Batteries [J].
Ju, Jiangwei ;
Wang, Yantao ;
Chen, Bingbing ;
Ma, Jun ;
Dong, Shanmu ;
Chai, Jingchao ;
Qu, Hongtao ;
Cui, Longfei ;
Wu, Xiuxiu ;
Cui, Guanglei .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (16) :13588-13597