Pointwise a posteriori error control for elliptic obstacle problems

被引:79
作者
Nochetto, RH [1 ]
Siebert, KG
Veeser, A
机构
[1] Univ Maryland, Dept Math, College Pk, MD 20742 USA
[2] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA
[3] Inst Angew Math, D-79104 Freiburg, Germany
[4] Univ Milan, Dipartimento Matemat, I-20133 Milan, Italy
关键词
D O I
10.1007/s00211-002-0411-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a finite element method for the elliptic obstacle problem over polyhedral domains in R-d, which enforces the unilateral constraint solely at the nodes. We derive novel optimal upper and lower a posteriori error bounds in the maximum norm irrespective of mesh fineness and the regularity of the obstacle, which is just assumed to be Holder continuous. They exhibit optimal order and localization to the non-contact set. We illustrate these results with simulations in 2d and 3d showing the impact of localization in mesh grading within the contact set along with quasi-optimal meshes.
引用
收藏
页码:163 / 195
页数:33
相关论文
共 19 条
[1]  
Adams R., 1975, PURE APPL MATH, V65
[2]  
[Anonymous], 1987, N HOLLAND MATH STUD
[3]  
[Anonymous], 1992, MEASURE THEORY FINE
[4]  
[Anonymous], 1982, PURE APPL MATH
[5]  
Baiocchi C., 1977, Mathematical Aspects of Finite Element Methods, V606, P27
[6]  
Chen ZM, 2000, NUMER MATH, V84, P527, DOI 10.1007/s002119900123
[7]  
Dari E, 2000, SIAM J NUMER ANAL, V37, P683
[9]  
FREHSE J, 1982, ANN SCU NORM SUP PIS, V9, P105
[10]  
Kinderlehrer D., 1980, PURE APPL MATH, V88