L-Arabinose triggers its own uptake via induction of the arabinose-specific Gal2p transporter in an industrial Saccharomyces cerevisiae strain

被引:7
作者
Oehling, Verena [1 ]
Klaassen, Paul [2 ]
Frick, Oliver [1 ,3 ]
Dusny, Christian [1 ,3 ]
Schmid, Andreas [1 ,3 ]
机构
[1] TU Dortmund Univ, Dept Biochem & Chem Engn, Lab Chem Biotechnol, Dortmund, Germany
[2] DSM Biotechnol Ctr, Delft, Netherlands
[3] UFZ Helmholtz Ctr Environm Res, Dept Solar Mat, Leipzig, Germany
关键词
L-Arabinose uptake; Lignocellulosic ethanol; Gal2p; Saccharomyces cerevisiae; Catabolite repression; L-Arabinose fermentation; Next generation sequencing; RNA-seq; YEAST HEXOSE TRANSPORTERS; FUEL-ETHANOL; ALCOHOLIC FERMENTATION; PATHWAY ENZYMES; XYLOSE; GLUCOSE; GROWTH; METABOLISM; EXPRESSION; GENES;
D O I
10.1186/s13068-018-1231-8
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Bioethanol production processes with Saccharomyces cerevisiae using lignocellulosic biomass as feedstock are challenged by the simultaneous utilization of pentose and hexose sugars from biomass hydrolysates. The pentose uptake into the cell represents a crucial role for the efficiency of the process. The focus of the here presented study was to understand the uptake and conversion of the pentose L-arabinose in S. cerevisiae and reveal its regulation by D-glucose and D-galactose. Gal2p-the most prominent transporter enabling L-arabinose uptake in S. cerevisiae wild-type strains-has an affinity for the transport of L-arabinose, D-glucose, and D-galactose. D-Galactose was reported for being mandatory for inducing GAL2 expression. GAL2 expression is also known to be regulated by D-glucose-mediated carbon catabolite repression, as well as catabolite inactivation. The results of the present study demonstrate that L-arabinose can be used as sole carbon and energy source by the recombinant industrial strain S. cerevisiae DS61180. RT-qPCR and RNA-Seq experiments confirmed that L-arabinose can trigger its own uptake via the induction of GAL2 expression. Expression levels of GAL2 during growth on L-arabinose reached up to 21% of those obtained with D-galactose as sole carbon and energy source. L-Arabinose-induced GAL2 expression was also subject to catabolite repression by D-glucose. Kinetic investigations of substrate uptake, biomass, and product formation during growth on a mixture of D-glucose/L-arabinose revealed impairment of growth and ethanol production from L-arabinose upon D-glucose depletion. The presence of D-glucose is thus preventing the fermentation of L-arabinose in S. cerevisiae DS61180. Comparative transcriptome studies including the wild-type and a precursor strain delivered hints for an increased demand in ATP production and cofactor regeneration during growth of S. cerevisiae DS61180 on L-arabinose. Our results thus emphasize that cofactor and energy metabolism demand attention if the combined conversion of hexose and pentose sugars is intended, for example in biorefineries using lignocellulosics.
引用
收藏
页数:16
相关论文
共 98 条
[1]   Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae [J].
Almeida, Jodo R. M. ;
Modig, Tobias ;
Petersson, Anneli ;
Hahn-Hagerdal, Barbel ;
Liden, Gunnar ;
Gorwa-Grauslund, Marie F. .
JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 2007, 82 (04) :340-349
[2]   HTSeq-a Python']Python framework to work with high-throughput sequencing data [J].
Anders, Simon ;
Pyl, Paul Theodor ;
Huber, Wolfgang .
BIOINFORMATICS, 2015, 31 (02) :166-169
[3]   Genome structure of a Saccharomyces cerevisiae strain widely used in bioethanol production [J].
Argueso, Juan Lucas ;
Carazzolle, Marcelo F. ;
Mieczkowski, Piotr A. ;
Duarte, Fabiana M. ;
Netto, Osmar V. C. ;
Missawa, Silvia K. ;
Galzerani, Felipe ;
Costa, Gustavo G. L. ;
Vidal, Ramon O. ;
Noronha, Melline F. ;
Dominska, Margaret ;
Andrietta, Maria G. S. ;
Andrietta, Silvio R. ;
Cunha, Anderson F. ;
Gomes, Luiz H. ;
Tavares, Flavio C. A. ;
Alcarde, Andre R. ;
Dietrich, Fred S. ;
McCusker, John H. ;
Petes, Thomas D. ;
Pereira, Goncalo A. G. .
GENOME RESEARCH, 2009, 19 (12) :2258-2270
[4]   A history of research on yeasts 5: the fermentation pathway [J].
Barnett, JA .
YEAST, 2003, 20 (06) :509-543
[5]   A modified Saccharomyces cerevisiae strain that consumes L-arabinose and produces ethanol [J].
Becker, J ;
Boles, E .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2003, 69 (07) :4144-4150
[6]   Quantitative Physiology of Saccharomyces cerevisiae at Near-Zero Specific Growth Rates [J].
Boender, Leonie G. M. ;
de Hulster, Erik A. F. ;
van Maris, Antonius J. A. ;
Daran-Lapujade, Pascale A. S. ;
Pronk, Jack T. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2009, 75 (17) :5607-5614
[7]   The molecular genetics of hexose transport in yeasts [J].
Boles, E ;
Hollenberg, CP .
FEMS MICROBIOLOGY REVIEWS, 1997, 21 (01) :85-111
[8]   Characterization of a glucose-repressed pyruvate kinase (Pyk2p) in Saccharomyces cerevisiae that is catalytically insensitive to fructose-1,6-bisphosphate [J].
Boles, E ;
Schulte, F ;
Miosga, T ;
Freidel, K ;
Schluter, E ;
Zimmermann, FK ;
Hollenberg, CP ;
Heinisch, JJ .
JOURNAL OF BACTERIOLOGY, 1997, 179 (09) :2987-2993
[9]   The Penicillium chrysogenum transporter PcAraT enables high-affinity, glucose-insensitive l-arabinose transport in Saccharomyces cerevisiae [J].
Bracher, Jasmine M. ;
Verhoeven, Maarten D. ;
Wisselink, H. Wouter ;
Crimi, Barbara ;
Nijland, Jeroen G. ;
Driessen, Arnold J. M. ;
Klaassen, Paul ;
van Maris, Antonius J. A. ;
Daran, Jean-Marc G. ;
Pronk, Jack T. .
BIOTECHNOLOGY FOR BIOFUELS, 2018, 11
[10]   UTILIZATION OF FORMATE AS AN ADDITIONAL ENERGY-SOURCE BY GLUCOSE-LIMITED CHEMOSTAT CULTURES OF CANDIDA-UTILIS CBS-621 AND SACCHAROMYCES-CEREVISIAE CBS-8066 - EVIDENCE FOR THE ABSENCE OF TRANSHYDROGENASE ACTIVITY IN YEASTS [J].
BRUINENBERG, PM ;
JONKER, R ;
VANDIJKEN, JP ;
SCHEFFERS, WA .
ARCHIVES OF MICROBIOLOGY, 1985, 142 (03) :302-306