Fabrication of hollow lattice alumina ceramic with good mechanical properties by Digital Light Processing 3D printing technology

被引:45
|
作者
Sun, Lijun [1 ,2 ,3 ]
Dong, Peng [4 ]
Zeng, Yong [1 ,2 ,3 ]
Chen, Jimin [1 ,2 ,3 ]
机构
[1] Beijing Univ Technol, Fac Mat & Mfg, Beijing 100124, Peoples R China
[2] Beijing Engn Res Ctr 3D Printing Digital Med Hlth, Beijing 100124, Peoples R China
[3] Minist Educ, Key Lab Trans Scale Laser Mfg Technol, Beijing 100124, Peoples R China
[4] Capital Aerosp Machinery Corp, Beijing 100076, Peoples R China
关键词
3D printing; Porous alumina; Hollow structure; Mechanical properties; Thermal insulation properties; THERMAL-CONDUCTIVITY; HIGH-POROSITY; PERFORMANCE; STEREOLITHOGRAPHY; DESIGN; AL2O3; FOAMS;
D O I
10.1016/j.ceramint.2021.06.065
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this study, two configurations of alumina (Al2O3) ceramics (hollow lattice structure and solid lattice structure) were prepared by DLP 3D printing technology. When sintered at 1600 degrees C for 4 h, dense alumina ceramics with an average grain size of 4.38 +/- 1.26 mu m can be obtained. The Al2O3 ceramics prepared by DLP process have good forming precision and shape. The dimension error can be controlled about 0.2 mm. The compressive strength of solid block is 572 MPa. The maximum compressive strength of solid lattice (2.0 mm in diameter and 45% in porosity) is 9.70 MPa. The maximum compressive strength of hollow lattice (2.0 mm in diameter, 0.3 mm in thickness and 70% in porosity) is 4.30 MPa. The thermal simulation results show that the temperature of the hollow lattice (diameter 1.2 mm, porosity 76%) with 500 degrees C upper surface transferring to the lower surface is only 88.6 degrees C, which is lower than 133 degrees C of the solid lattice. Hollow lattice structure can effectively reduce heat loss and improve energy efficiency. The hollow lattice structure Al2O3 ceramics formed by DLP technology is expected to be used in industrial thermal insulation applications.
引用
收藏
页码:26519 / 26527
页数:9
相关论文
共 50 条
  • [1] Preparation of Hollow Lattice Alumina Ceramics by 3D Printing
    Sun L.
    Dong P.
    Zeng Y.
    Chen J.
    Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2021, 49 (09): : 1853 - 1860
  • [2] Fabrication of alumina ceramics with functional gradient structures by digital light processing 3D printing technology
    Zeng, Yong
    Sun, Lijun
    Yao, Haihua
    Chen, Jimin
    CERAMICS INTERNATIONAL, 2022, 48 (08) : 10613 - 10619
  • [3] The fabrication of SiBCN ceramic components from preceramic polymers by digital light processing (DLP) 3D printing technology
    Li, Shan
    Duan, Wenyan
    Zhao, Tong
    Han, Weijian
    Wang, Li
    Dou, Rui
    Wang, Gong
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2018, 38 (14) : 4597 - 4603
  • [4] 3D printing of hydroxyapatite scaffolds with good mechanical and biocompatible properties by digital light processing
    Zeng, Yong
    Yan, Yinzhou
    Yan, Hengfeng
    Liu, Chunchun
    Li, Peiran
    Dong, Peng
    Zhao, Ying
    Chen, Jimin
    JOURNAL OF MATERIALS SCIENCE, 2018, 53 (09) : 6291 - 6301
  • [5] The Fabrication of Micro Beam from Photopolymer by Digital Light Processing 3D Printing Technology
    Ertugrul, Ishak
    MICROMACHINES, 2020, 11 (05)
  • [6] Optimization of Printing Parameters for Digital Light Processing 3D Printing of Hollow Microneedle Arrays
    Mathew, Essyrose
    Pitzanti, Giulia
    dos Santos, Ana L. Gomes
    Lamprou, Dimitrios A.
    PHARMACEUTICS, 2021, 13 (11)
  • [7] Digital light processing 3D printing of ceramic shell for precision casting
    Li, Fei
    Ji, Xu
    Wu, Zhenxing
    Qi, Chengkang
    Lai, Junhua
    Xian, Quangang
    Sun, Baode
    MATERIALS LETTERS, 2020, 276
  • [8] High-resolution metal 3D printing via digital light processing
    Melentiev, Ruslan
    Harakaly, Gyorgy
    Stogerer, Johannes
    Mitteramskogler, Gerald
    Wagih, A.
    Lubineau, Gilles
    Grande, Carlos A.
    ADDITIVE MANUFACTURING, 2024, 85
  • [9] Fabrication of 5-fluorouracil-loaded tablets with hyperbranched polyester by digital light processing 3D printing technology
    Chen, Kuo-Yu
    Zeng, Jyun-Jie
    Lin, Guan-Ting
    EUROPEAN POLYMER JOURNAL, 2022, 171
  • [10] Fabrication of Degradable Intervertebral Fusion with Good Mechanical Properties and Biocompatibility Based on 3D Printing Technology
    Wang Qiang
    Zheng Xiongfei
    Wang Heran
    PROCEEDINGS OF THE 2017 6TH INTERNATIONAL CONFERENCE ON MEASUREMENT, INSTRUMENTATION AND AUTOMATION (ICMIA 2017), 2017, 154 : 595 - 600