Ionospheric Sounding Using Real-Time Amateur Radio Reporting Networks

被引:29
作者
Frissell, N. A. [1 ]
Miller, E. S.
Kaeppler, S. R. [2 ]
Ceglia, F.
Pascoe, D.
Sinanis, N.
Smith, P.
Williams, R.
Shovkoplyas, A.
机构
[1] Space Virginia Tech SuperDARN Lab Blacksburg, Blacksburg, VA 24060 USA
[2] SRI Int Menlo Pk, Menlo Pk, CA USA
来源
SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS | 2014年 / 12卷 / 12期
关键词
ionosphere;
D O I
10.1002/2014SW001132
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Amateur radio reporting networks, such as the Reverse Beacon Network (RBN), PSKReporter, and the Weak Signal Propagation Network, are powerful tools for remote sensing the ionosphere. These voluntarily constructed and operated networks provide real-time and archival data that could be used for space weather operations, forecasting, and research. The potential exists for the study of both global and localized effects. The capability of one such network to detect space weather disturbances is demonstrated by examining the impacts on RBN-observed HF propagation paths of an X2.9 class solar flare detected by the GOES 15 satellite. Prior to the solar flare, the RBN observed strong HF propagation conditions between multiple continents, primarily Europe, North America, and South America. Immediately following the GOES 15 detection of the solar flare, the number of reported global RBN propagation paths dropped to less than 35% that of prior observations. After the flare, the RBN showed the gradual recovery of HF propagation conditions.
引用
收藏
页码:651 / 656
页数:6
相关论文
共 13 条
  • [1] Chamberlin P.C., 2009, SOLAR PHYS SPACE WEA, V7438, P743, DOI [10.1117/12.826807, DOI 10.1117/12.826807]
  • [2] A decade of the Super Dual Auroral Radar Network (SuperDARN): scientific achievements, new techniques and future directions
    Chisham, G.
    Lester, M.
    Milan, S. E.
    Freeman, M. P.
    Bristow, W. A.
    Grocott, A.
    McWilliams, K. A.
    Ruohoniemi, J. M.
    Yeoman, T. K.
    Dyson, P. L.
    Greenwald, R. A.
    Kikuchi, T.
    Pinnock, M.
    Rash, J. P. S.
    Sato, N.
    Sofko, G. J.
    Villain, J.-P.
    Walker, A. D. M.
    [J]. SURVEYS IN GEOPHYSICS, 2007, 28 (01) : 33 - 109
  • [3] Coster Anthea., 2008, Space Weather, V6, P1, DOI [DOI 10.1029/2008SW000400, 10.1029/2008SW000400]
  • [4] Database of electron density profiles from Arecibo Radar Observatory for the assessment of ionospheric models
    Eccles, Vince
    Vo, Hien
    Thompson, Jonathan
    Gonzalez, Sixto
    Sojka, Jan J.
    [J]. SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS, 2011, 9
  • [5] Matplotlib: A 2D graphics environment
    Hunter, John D.
    [J]. COMPUTING IN SCIENCE & ENGINEERING, 2007, 9 (03) : 90 - 95
  • [6] McKinney W., 2010, P 9 PYTH SCI C, V445, P51, DOI 10.25080/Majora-92bf1922-00a
  • [7] Python']Python for Scientists and Engineers
    Millman, K. Jarrod
    Aivazis, Michael
    [J]. COMPUTING IN SCIENCE & ENGINEERING, 2011, 13 (02) : 9 - 12
  • [8] IPython']Python:: A system for interactive scientific computing
    Perez, Fernando
    Granger, Brian E.
    [J]. COMPUTING IN SCIENCE & ENGINEERING, 2007, 9 (03) : 21 - 29
  • [9] Recent advances in real-time analysis of ionograms and ionospheric drift measurements with digisondes
    Reinisch, BW
    Huang, X
    Galkin, IA
    Paznukhov, V
    Kozlov, A
    [J]. JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS, 2005, 67 (12) : 1054 - 1062
  • [10] Rideout William., 2006, Automated GPS processing for global total electron content data, V10, P219, DOI [DOI 10.1007/S10291-006-0029-5, 10.1007/s10291-006-0029-5]