Materials and design strategies for stretchable electroluminescent devices

被引:39
作者
Yoo, Jisu [1 ]
Li, Shi [2 ]
Kim, Dae-Hyeong [3 ,4 ,5 ]
Yang, Jiwoong [2 ,6 ]
Choi, Moon Kee [1 ,7 ]
机构
[1] Ulsan Natl Inst Sci & Technol UNIST, Dept Mat Sci & Engn, Ulsan 44919, South Korea
[2] Daegu Gyeongbuk Inst Sci & Technol DGIST, Dept Energy Sci & Engn, Daegu 42988, South Korea
[3] Inst Basic Sci IBS, Ctr Nanoparticle Res, Seoul 08826, South Korea
[4] Seoul Natl Univ, Inst Chem Proc, Sch Chem & Biol Engn, Seoul 08826, South Korea
[5] Seoul Natl Univ, Dept Mat Sci & Engn, Seoul 08826, South Korea
[6] Daegu Gyeongbuk Inst Sci & Technol DGIST, Energy Sci & Engn Res Ctr, Daegu 42988, South Korea
[7] Ulsan Natl Inst Sci & Technol UNIST, Grad Sch Semicond Mat & Devices Engn, Ctr Future Semicond Technol FUST, Ulsan 44919, South Korea
基金
新加坡国家研究基金会;
关键词
LIGHT-EMITTING-DIODES; HIGHLY EFFICIENT; ELECTRONIC SKIN; QUANTUM DOTS; MECHANICAL-PROPERTIES; PRINTING TECHNIQUES; THIN-FILMS; TRANSPARENT; POLYMER; NANOCRYSTALS;
D O I
10.1039/d2nh00158f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Stretchable displays have recently received increasing attention as input and/or output interfaces for next-generation human-friendly electronic systems. Stretchable electroluminescent (EL) devices are a core component of stretchable displays, and they can be classified into two types, structurally stretchable EL devices and intrinsically stretchable EL devices, according to the mechanism for achieving their stretchability. We herein present recent advances in materials and design strategies for stretchable EL devices. First, stretchable devices based on ultrathin EL devices are introduced. Ultrathin EL devices are mechanically flexible like thin paper, and they can become stretchable through various structural engineering methods, such as inducing a buckled structure, employing interconnects with stretchable geometries, and applying origami/kirigami techniques. Secondly, intrinsically stretchable EL devices can be fabricated by using inherently stretchable electronic materials. For example, light-emitting electrochemical cells and EL devices with a simpler structure using alternating current have been developed. Furthermore, novel stretchable semiconductor materials have been presented for the development of intrinsically stretchable light-emitting diodes. After discussing these two types of stretchable EL devices, we briefly discuss applications of deformable EL devices and conclude the review.
引用
收藏
页码:801 / 821
页数:21
相关论文
共 186 条
  • [151] Local versus global buckling of thin films on elastomeric substrates
    Wang, Shuodao
    Song, Jizhou
    Kim, Dae-Hyeong
    Huang, Yonggang
    Rogers, John A.
    [J]. APPLIED PHYSICS LETTERS, 2008, 93 (02)
  • [152] Skin electronics from scalable fabrication of an intrinsically stretchable transistor array
    Wang, Sihong
    Xu, Jie
    Wang, Weichen
    Wang, Ging-Ji Nathan
    Rastak, Reza
    Molina-Lopez, Francisco
    Chung, Jong Won
    Niu, Simiao
    Feig, Vivian R.
    Lopez, Jeffery
    Lei, Ting
    Kwon, Soon-Ki
    Kim, Yeongin
    Foudeh, Amir M.
    Ehrlich, Anatol
    Gasperini, Andrea
    Yun, Youngjun
    Murmann, Boris
    Tok, Jeffery B. -H.
    Bao, Zhenan
    [J]. NATURE, 2018, 555 (7694) : 83 - +
  • [153] Fully transparent, flexible and waterproof synapses with pattern recognition in organic environments
    Wang, Tian-Yu
    Meng, Jia-Lin
    He, Zhen-Yu
    Chen, Lin
    Zhu, Hao
    Sun, Qing-Qing
    Ding, Shi-Jin
    Zhou, Peng
    Zhang, David Wei
    [J]. NANOSCALE HORIZONS, 2019, 4 (06) : 1293 - 1301
  • [154] A highly stretchable, transparent, and conductive polymer
    Wang, Yue
    Zhu, Chenxin
    Pfattner, Raphael
    Yan, Hongping
    Jin, Lihua
    Chen, Shucheng
    Molina-Lopez, Francisco
    Lissel, Franziska
    Liu, Jia
    Rabiah, Noelle I.
    Chen, Zheng
    Chung, Jong Won
    Linder, Christian
    Toney, Michael F.
    Murmann, Boris
    Bao, Zhenan
    [J]. SCIENCE ADVANCES, 2017, 3 (03):
  • [155] White MS, 2013, NAT PHOTONICS, V7, P811, DOI [10.1038/nphoton.2013.188, 10.1038/NPHOTON.2013.188]
  • [156] Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes
    Won, Yu-Ho
    Cho, Oul
    Kim, Taehyung
    Chung, Dae-Young
    Kim, Taehee
    Chung, Heejae
    Jang, Hyosook
    Lee, Junho
    Kim, Dongho
    Jang, Eunjoo
    [J]. NATURE, 2019, 575 (7784) : 634 - +
  • [157] Flexible blue-green and white light-emitting electrochemical cells based on cationic iridium complex
    Wu, Jiaqi
    Li, Fushan
    Zeng, Qunying
    Nie, Chen
    Ooi, Poh Choon
    Guo, Tailiang
    Shan, Guogang
    Su, Zhongmin
    [J]. ORGANIC ELECTRONICS, 2016, 28 : 314 - 318
  • [158] Highly Conductive and Stretchable Silver Nanowire Conductors
    Xu, Feng
    Zhu, Yong
    [J]. ADVANCED MATERIALS, 2012, 24 (37) : 5117 - 5122
  • [159] Controlled Mechanical Buckling for Origami-Inspired Construction of 3D Microstructures in Advanced Materials
    Yan, Zheng
    Zhang, Fan
    Wang, Jiechen
    Liu, Fei
    Guo, Xuelin
    Nan, Kewang
    Lin, Qing
    Gao, Mingye
    Xiao, Dongqing
    Shi, Yan
    Qiu, Yitao
    Luan, Haiwen
    Kim, Jung Hwan
    Wang, Yiqi
    Luo, Hongying
    Han, Mengdi
    Huang, Yonggang
    Zhang, Yihui
    Rogers, John A.
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (16) : 2629 - 2639
  • [160] Electroluminescence of Giant Stretchability
    Yang, Can Hui
    Chen, Baohong
    Zhou, Jinxiong
    Chen, Yong Mei
    Suo, Zhigang
    [J]. ADVANCED MATERIALS, 2016, 28 (22) : 4480 - 4484