Min-entropy and quantum key distribution: Nonzero key rates for "small" numbers of signals

被引:18
作者
Bratzik, Sylvia [1 ]
Mertz, Markus [1 ]
Kampermann, Hermann [1 ]
Bruss, Dagmar [1 ]
机构
[1] Univ Dusseldorf, Inst Theoret Phys 3, D-40225 Dusseldorf, Germany
来源
PHYSICAL REVIEW A | 2011年 / 83卷 / 02期
关键词
SECURITY; CRYPTOGRAPHY; STATE;
D O I
10.1103/PhysRevA.83.022330
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We calculate an achievable secret key rate for quantum key distribution with a finite number of signals by evaluating the quantum conditional min-entropy explicitly. The min-entropy for a classical random variable is the negative logarithm of the maximal value in its probability distribution. The quantum conditional min-entropy can be expressed in terms of the guessing probability, which we calculate for d-dimensional systems. We compare these key rates to previous approaches using the von Neumann entropy and find nonzero key rates for a smaller number of signals. Furthermore, we improve the secret key rates by modifying the parameter estimation step. Both improvements taken together lead to nonzero key rates for only 10(4)-10(5) signals. An interesting conclusion can also be drawn from the additivity of the min-entropy and its relation to the guessing probability: for a set of symmetric tensor product states, the optimal minimum-error discrimination (MED) measurement is the optimal MED measurement on each subsystem.
引用
收藏
页数:9
相关论文
共 42 条
  • [1] [Anonymous], 1978, THEOR PROB APPL
  • [2] Optimum measurements for discrimination among symmetric quantum states and parameter estimation
    Ban, M
    Kurokawa, K
    Momose, R
    Hirota, O
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1997, 36 (06) : 1269 - 1288
  • [3] Minimum-error discrimination between multiply symmetric states
    Barnett, SM
    [J]. PHYSICAL REVIEW A, 2001, 64 (03): : 3
  • [4] Incoherent and coherent eavesdropping in the six-state protocol of quantum cryptography
    Bechmann-Pasquinucci, H
    Gisin, N
    [J]. PHYSICAL REVIEW A, 1999, 59 (06): : 4238 - 4248
  • [5] Quantum cryptography with 3-state systems
    Bechmann-Pasquinucci, H
    Peres, A
    [J]. PHYSICAL REVIEW LETTERS, 2000, 85 (15) : 3313 - 3316
  • [6] Ben-Or M., ARXIVQUANTPH0409062
  • [7] Bennett C. H., 2014, Theoretical computer science, P175, DOI [DOI 10.1016/J.TCS.2014.05.025, 10.1016/j.tcs.2014.05.025]
  • [8] TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS
    BENNETT, CH
    BRASSARD, G
    CREPEAU, C
    JOZSA, R
    PERES, A
    WOOTTERS, WK
    [J]. PHYSICAL REVIEW LETTERS, 1993, 70 (13) : 1895 - 1899
  • [9] Security of quantum key distribution against all collective attacks
    Biham, E
    Boyer, M
    Brassard, G
    van de Graaf, J
    Mor, T
    [J]. ALGORITHMICA, 2002, 34 (04) : 372 - 388
  • [10] BRU D, 1998, PHYS REV LETT, V81, P3018