A deep convolutional neural network-based automatic delineation strategy for multiple brain metastases stereotactic radiosurgery

被引:119
作者
Liu, Yan [1 ,2 ]
Stojadinovic, Strahinja [2 ]
Hrycushko, Brian [2 ]
Wardak, Zabi [2 ]
Lau, Steven [2 ]
Lu, Weiguo [2 ]
Yan, Yulong [2 ]
Jiang, Steve B. [2 ]
Zhen, Xin [2 ,3 ]
Timmerman, Robert [2 ]
Nedzi, Lucien [2 ]
Gu, Xuejun [2 ]
机构
[1] Sichuan Univ, Sch Elect Engn & Informat, Chengdu, Sichuan, Peoples R China
[2] Univ Texas Southwestern Med Ctr Dallas, Dept Radiat Oncol, Dallas, TX 75390 USA
[3] Southern Med Univ, Dept Biomed Engn, Guangzhou, Guangdong, Peoples R China
关键词
SEGMENTATION; TUMOR; IMAGES; CLASSIFICATION; IDENTIFICATION; LESIONS;
D O I
10.1371/journal.pone.0185844
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Accurate and automatic brain metastases target delineation is a key step for efficient and effective stereotactic radiosurgery (SRS) treatment planning. In this work, we developed a deep learning convolutional neural network (CNN) algorithm for segmenting brain metastases on contrast-enhanced T1-weighted magnetic resonance imaging (MRI) datasets. We integrated the CNN-based algorithm into an automatic brain metastases segmentation workflow and validated on both Multimodal Brain Tumor Image Segmentation challenge (BRATS) data and clinical patients' data. Validation on BRATS data yielded average DICE coefficients (DCs) of 0.75 +/- 0.07 in the tumor core and 0.81 +/- 0.04 in the enhancing tumor, which outperformed most techniques in the 2015 BRATS challenge. Segmentation results of patient cases showed an average of DCs 0.67 +/- 0.03 and achieved an area under the receiver operating characteristic curve of 0.98 +/- 0.01. The developed automatic segmentation strategy surpasses current benchmark levels and offers a promising tool for SRS treatment planning for multiple brain metastases.
引用
收藏
页数:17
相关论文
共 34 条
[1]  
[Anonymous], 2015, IEEE I CONF COMP VIS, DOI DOI 10.1109/ICCV.2015.123
[2]  
[Anonymous], 2015, P MICCAI BRATS
[3]  
[Anonymous], P MULT BRAIN TUM IM
[4]  
[Anonymous], 2015, P MICCAI BRAIN TUMOR
[5]  
[Anonymous], 2015, P MICCAI WORKSHOP MU
[6]  
Assaf Hoogi AL, 2015, MICCAI BRATS 2015, P34
[7]  
Bakas S, 2015, P MULT BRAIN TUM IM, P5
[8]   A survey of MRI-based medical image analysis for brain tumor studies [J].
Bauer, Stefan ;
Wiest, Roland ;
Nolte, Lutz-P ;
Reyes, Mauricio .
PHYSICS IN MEDICINE AND BIOLOGY, 2013, 58 (13) :R97-R129
[9]  
Bauer S, 2011, LECT NOTES COMPUT SC, V6893, P354, DOI 10.1007/978-3-642-23626-6_44
[10]   Tumor margin identification and prediction of the primary tumor from brain metastases using FTIR imaging and support vector machines [J].
Bergner, Norbert ;
Romeike, Bernd F. M. ;
Reichart, Rupert ;
Kalff, Rolf ;
Krafft, Christoph ;
Popp, J. uergen .
ANALYST, 2013, 138 (14) :3983-3990