Tracking replication enzymology in vivo by genome-wide mapping of ribonucleotide incorporation

被引:148
作者
Clausen, Anders R. [1 ]
Lujan, Scott A. [1 ]
Burkholder, Adam B. [2 ]
Orebaugh, Clinton D. [1 ]
Williams, Jessica S. [1 ]
Clausen, Maryam F. [3 ]
Malc, Ewa P. [3 ]
Mieczkowski, Piotr A. [3 ]
Fargo, David C. [2 ]
Smith, Duncan J. [4 ]
Kunkel, Thomas A. [1 ]
机构
[1] NIEHS, Genome Integr & Struct Biol Lab, NIH, Res Triangle Pk, NC 27709 USA
[2] NIEHS, Integrat Bioinformat, NIH, Res Triangle Pk, NC 27709 USA
[3] Univ N Carolina, Dept Genet, High Throughput Sequencing Facil, Chapel Hill, NC USA
[4] NYU, Dept Biol, Ctr Genom & Syst Biol, New York, NY 10003 USA
基金
美国国家卫生研究院;
关键词
DNA-POLYMERASE-EPSILON; MISMATCH REPAIR; RNASE H2; MITOCHONDRIAL; DISCRIMINATION; CONSEQUENCES; INSTABILITY; INITIATION; MUTATIONS; MECHANISM;
D O I
10.1038/nsmb.2957
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Ribonucleotides are frequently incorporated into DNA during replication in eukaryotes. Here we map genome-wide distribution of these ribonucleotides as markers of replication enzymology in budding yeast, using a new 5' DNA end-mapping method, hydrolytic end sequencing (HydEn-seq). HydEn-seq of DNA from ribonucleotide excision repair-deficient strains reveals replicase- and strand-specific patterns of ribonucleotides in the nuclear genome. These patterns support the roles of DNA polymerases a and 8 in lagging-strand replication and of DNA polymerase w in leading-strand replication. They identify replication origins, termination zones and variations in ribonucleotide incorporation frequency across the genome that exceed three orders of magnitude. HydEn-seq also reveals strand-specific 5' DNA ends at mitochondrial replication origins, thus suggesting unidirectional replication of a circular genome. Given the conservation of enzymes that incorporate and process ribonucleotides in DNA, HydEn-seq can be used to track replication enzymology in other organisms.
引用
收藏
页码:185 / 191
页数:7
相关论文
共 56 条
[1]   A Saccharomyces cerevisiae RNase H2 Interaction Network Functions To Suppress Genome Instability [J].
Allen-Soltero, Stephanie ;
Martinez, Sandra L. ;
Putnam, Christopher D. ;
Kolodner, Richard D. .
MOLECULAR AND CELLULAR BIOLOGY, 2014, 34 (08) :1521-1534
[2]   Break-Induced DNA Replication [J].
Anand, Ranjith P. ;
Lovett, Susan T. ;
Haber, James E. .
COLD SPRING HARBOR PERSPECTIVES IN BIOLOGY, 2013, 5 (12)
[3]   Okazaki Fragment Metabolism [J].
Balakrishnan, Lata ;
Bambara, Robert A. .
COLD SPRING HARBOR PERSPECTIVES IN BIOLOGY, 2013, 5 (02)
[4]   Chromosomal ARS1 has a single leading strand start site [J].
Bielinsky, AK ;
Gerbi, SA .
MOLECULAR CELL, 1999, 3 (04) :477-486
[5]   Mammalian mitochondrial DNA replicates bidirectionally from an initiation zone [J].
Bowmaker, M ;
Yang, MY ;
Yasukawa, T ;
Reyes, A ;
Jacobs, HT ;
Huberman, JA ;
Holt, IJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (51) :50961-50969
[6]   Polymerase Dynamics at the Eukaryotic DNA Replication Fork [J].
Burgers, Peter M. J. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2009, 284 (07) :4041-4045
[7]   Failure to produce mitochondrial DNA results in embryonic lethality in Rnaseh1 null mice [J].
Cerritelli, SM ;
Frolova, EG ;
Feng, CG ;
Grinberg, A ;
Love, PE ;
Crouch, RJ .
MOLECULAR CELL, 2003, 11 (03) :807-815
[8]   Ribonuclease H: the enzymes in eukaryotes [J].
Cerritelli, Susana M. ;
Crouch, Robert J. .
FEBS JOURNAL, 2009, 276 (06) :1494-1505
[9]   Mismatch repair-independent tandem repeat sequence instability resulting from ribonucleotide incorporation by DNA polymerase ε [J].
Clark, Alan B. ;
Lujan, Scott A. ;
Kissling, Grace E. ;
Kunkel, Thomas A. .
DNA REPAIR, 2011, 10 (05) :476-482
[10]   Structure-function analysis of ribonucleotide bypass by B family DNA replicases [J].
Clausen, Anders R. ;
Murray, Michael S. ;
Passer, Andrew R. ;
Pedersen, Lars C. ;
Kunkel, Thomas A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (42) :16802-16807