Improving the Delivery of Drugs and Nucleic Acids to T Cells Using Nanotechnology

被引:11
作者
Lou, Jenny [1 ,2 ]
Heater, Alexandra [2 ,3 ]
Zheng, Gang [1 ,2 ]
机构
[1] Univ Toronto, Dept Med Biophys, 101 Coll St,Suite 15-701, Toronto, ON, Canada
[2] Univ Hlth Network, Princess Margaret Canc Ctr, 101 Coll St, Toronto, ON M5G 0A3, Canada
[3] Univ Waterloo, Waterloo Inst Nanotechnol, Mike & Ophelia Lazaridis Quantum Nano Ctr, 200 Univ Ave W, Waterloo, ON N2L 3G1, Canada
来源
SMALL STRUCTURES | 2021年 / 2卷 / 08期
基金
加拿大自然科学与工程研究理事会; 加拿大创新基金会;
关键词
CAR T-cell therapies; CRISPR; Cas9; drug delivery; mRNA; nanoparticles; siRNA; T cells; SIRNA DELIVERY; NANOPARTICLES; ANTIBODY; THERAPY; IMMUNOMODULATORS; INJECTIONS; MELANOMA; CANCER;
D O I
10.1002/sstr.202100026
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
T cells play several roles in antitumor immunity, including mediating cytotoxicity, generating immune memory, and promoting humoral immunity. Given these critical roles, T cells are the therapeutic target of immunotherapies that have achieved clinical success, notably immune checkpoint inhibitors and chimeric antigen receptor T-cell therapy. However, a fraction of patients benefits from these treatments due to intolerable toxicities and limited efficacy. These issues stem in part from inefficient and nonselective drug delivery to T cells. Nanotechnology may help resolve these delivery issues, as nanoparticles can serve as modular drug delivery vehicles with targeting abilities that can be applied for ex vivo and in vivo delivery. Herein, applications of nanotechnology in improving extracellular delivery of cytokines and small molecule drugs and intracellular delivery of siRNA to T cells are described. An overview of nanoparticle-mediated delivery of nucleic acids for chimeric antigen receptor T-cell therapy and CRISPR/Cas9 genome editing is provided. Finally, an outlook on the challenges and opportunities for the advancement of nanoparticle-mediated drug delivery to T cells is shared.
引用
收藏
页数:15
相关论文
共 84 条
  • [1] The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs
    Akinc, Akin
    Maier, Martin A.
    Manoharan, Muthiah
    Fitzgerald, Kevin
    Jayaraman, Muthusamy
    Barros, Scott
    Ansell, Steven
    Du, Xinyao
    Hope, Michael J.
    Madden, Thomas D.
    Mui, Barbara L.
    Semple, Sean C.
    Tam, Ying K.
    Ciufolini, Marco
    Witzigmann, Dominik
    Kulkarni, Jayesh A.
    van der Meel, Roy
    Cullis, Pieter R.
    [J]. NATURE NANOTECHNOLOGY, 2019, 14 (12) : 1084 - 1087
  • [2] Electroporation of NKG2D RNA CAR Improves Vγ9Vδ2 T Cell Responses against Human Solid Tumor Xenografts
    Ang, Wei Xia
    Ng, Yu Yang
    Xiao, Lin
    Chen, Can
    Li, Zhendong
    Chi, Zhixia
    Tay, Johan Chin-Kang
    Tan, Wee Kiat
    Zeng, Jieming
    Toh, Han Chong
    Wang, Shu
    [J]. MOLECULAR THERAPY-ONCOLYTICS, 2020, 17 : 421 - 430
  • [3] High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: Analysis of 270 patients treated between 1985 and 1993
    Atkins, MB
    Lotze, MT
    Dutcher, JP
    Fisher, RI
    Weiss, G
    Margolin, K
    Abrams, J
    Sznol, M
    Parkinson, D
    Hawkins, M
    Paradise, C
    Kunkel, L
    Rosenberg, SA
    [J]. JOURNAL OF CLINICAL ONCOLOGY, 1999, 17 (07) : 2105 - 2116
  • [4] Self-Assembled Multivalent Aptamer Nanoparticles with Potential CAR-like Characteristics Could Activate T Cells and Inhibit Melanoma Growth
    Bai, Chenjun
    Gao, Shanshan
    Hu, Sai
    Liu, Xuemei
    Li, Hui
    Dong, Jie
    Huang, Aixue
    Zhu, Lingling
    Zhou, Pingkun
    Li, Shaohua
    Shao, Ningsheng
    [J]. MOLECULAR THERAPY-ONCOLYTICS, 2020, 17 : 9 - 20
  • [5] CRISPR/Cas9 Genome Editing Using Gold-Nanoparticle-Mediated Laserporation
    Bosnjak, Berislav
    Permanyer, Marc
    Sethi, Maya K.
    Galla, Melanie
    Maetzig, Tobias
    Heinemann, Dag
    Willenzon, Stefani
    Foerster, Reinhold
    Heisterkamp, Alexander
    Kalies, Stefan
    [J]. ADVANCED BIOSYSTEMS, 2018, 2 (11)
  • [6] Conjugating Prussian blue nanoparticles onto antigen-specific T cells as a combined nanoimmunotherapy
    Burga, Rachel A.
    Patel, Shabnum
    Bollard, Catherine M.
    Cruz, Conrad Russell Y.
    Fernandes, Rohan
    [J]. NANOMEDICINE, 2016, 11 (14) : 1759 - 1767
  • [7] Biomaterials in Chimeric Antigen Receptor T-Cell Process Development
    Cardle, Ian I.
    Cheng, Emmeline L.
    Jensen, Michael C.
    Pun, Suzie H.
    [J]. ACCOUNTS OF CHEMICAL RESEARCH, 2020, 53 (09) : 1724 - 1738
  • [8] In Vivo T Cell-Targeting Nanoparticle Drug Delivery Systems: Considerations for Rational Design
    Cevaal, Paula M.
    Ali, Abdalla
    Czuba-Wojnilowicz, Ewa
    Symons, Jori
    Lewin, Sharon R.
    Cortez-Jugo, Christina
    Caruso, Frank
    [J]. ACS NANO, 2021, 15 (03) : 3736 - 3753
  • [9] PLGA-nanoparticle mediated delivery of anti-OX40 monoclonal antibody enhances anti-tumor cytotoxic T cell responses
    Chen, Mingshui
    Ouyang, Haichao
    Zhou, Shangyong
    Li, Jieyu
    Ye, Yunbin
    [J]. CELLULAR IMMUNOLOGY, 2014, 287 (02) : 91 - 99
  • [10] An Efficient Low Cost Method for Gene Transfer to T Lymphocytes
    Chicaybam, Leonardo
    Sodre, Andressa Laino
    Curzio, Bianca Azevedo
    Bonamino, Martin Hernan
    [J]. PLOS ONE, 2013, 8 (03):