KNL-1 directs assembly of the microtubule-binding interface of the kinetochore in C. elegans

被引:184
作者
Desai, A [1 ]
Rybina, S [1 ]
Müller-Reichert, T [1 ]
Shevchenko, A [1 ]
Shevchenko, A [1 ]
Hyman, A [1 ]
Oegema, K [1 ]
机构
[1] Max Planck Inst Mol Cell Biol & Genet, MPI CBG, D-01307 Dresden, Germany
关键词
centromere; mitosis; tubulin; CENP; chromosome; spindle;
D O I
10.1101/gad.1126303
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Segregation of the replicated genome during cell division requires kinetochores, mechanochemical organelles that assemble on mitotic chromosomes to connect them to spindle microtubules. CENP-A, a histone H3 variant, and CENP-C, a conserved structural protein, form the DNA-proximal foundation for kinetochore assembly. Using RNA interference-based genomics in Caenorhabditis elegans, we identified KNL-1, a novel kinetochore protein whose depletion, like that of CeCENP-A or CeCENP-C, leads to a "kinetochore-null" phenotype. KNL-1 is downstream of CeCENP-A and CeCENP-C in a linear assembly hierarchy. In embryonic extracts, KNL-1 exhibits substoichiometric interactions with CeCENP-C and forms a near-stoichiometric complex with CeNDC-80 and HIM-10, the C. elegans homologs of Ndc80p/HEC1p and Nuf2p-two widely conserved outer kinetochore components. However, CeNDC-80 and HIM-10 are not functionally equivalent to KNL-1 because their inhibition, although preventing formation of a mechanically stable kinetochore-microtubule interface and causing chromosome missegregation, does not result in a kinetochore-null phenotype. The greater functional importance of KNL-1 may be due to its requirement for targeting multiple components of the outer kinetochore, including CeNDC-80 and HIM-10. Thus, KNL-1 plays a central role in translating the initiation of kinetochore assembly by CeCENP-A and CeCENP-C into the formation of a functional microtubule-binding interface.
引用
收藏
页码:2421 / 2435
页数:15
相关论文
共 43 条
  • [1] CLASPs are CLIP-115 and-170 associating proteins involved in the regional regulation of microtubule dynamics in motile fibroblasts
    Akhmanova, A
    Hoogenraad, CC
    Drabek, K
    Stepanova, T
    Dortland, B
    Verkerk, T
    Vermeulen, W
    Burgering, BM
    De Zeeuw, CI
    Grosveld, F
    Galjart, N
    [J]. CELL, 2001, 104 (06) : 923 - 935
  • [2] Phospho-regulation of kinetochore-microtubule attachments by the aurora kinase Ipl1p
    Cheeseman, LM
    Anderson, S
    Jwa, M
    Green, EM
    Kang, JS
    Yates, JR
    Chan, CSM
    Drubin, DG
    Barnes, G
    [J]. CELL, 2002, 111 (02) : 163 - 172
  • [3] HEC, a novel nuclear protein rich in leucine heptad repeats specifically involved in mitosis
    Chen, YM
    Riley, DJ
    Chen, PL
    Lee, WH
    [J]. MOLECULAR AND CELLULAR BIOLOGY, 1997, 17 (10) : 6049 - 6056
  • [4] Centromeres and kinetochores: From epigenetics to mitotic checkpoint signaling
    Cleveland, DW
    Mao, YH
    Sullivan, KF
    [J]. CELL, 2003, 112 (04) : 407 - 421
  • [5] hNuf2 inhibition blocks stable kinetochore-microtubule attachment and induces mitotic cell death in HeLa cells
    DeLuca, JG
    Moree, B
    Hickey, JM
    Kilmartin, JV
    Salmon, ED
    [J]. JOURNAL OF CELL BIOLOGY, 2002, 159 (04) : 549 - 555
  • [6] Kin I kinesins are microtubule-destabilizing enzymes
    Desai, A
    Verma, S
    Mitchison, TJ
    Walczak, CE
    [J]. CELL, 1999, 96 (01) : 69 - 78
  • [7] Francis-Lang H, 1999, METH MOL B, V122, P223
  • [8] Functional genomic analysis of cell division in C-elegans using RNAi of genes on chromosome III
    Gönczy, P
    Echeverri, C
    Oegema, K
    Coulson, A
    Jones, SJM
    Copley, RR
    Duperon, J
    Oegema, J
    Brehm, M
    Cassin, E
    Hannak, E
    Kirkham, M
    Pichler, S
    Flohrs, K
    Goessen, A
    Leidel, S
    Alleaume, AM
    Martin, C
    Özlü, N
    Bork, P
    Hyman, AA
    [J]. NATURE, 2000, 408 (6810) : 331 - 336
  • [9] Proper metaphase spindle length is determined by centromere proteins Mis12 and Mis6 required for faithful chromosome segregation
    Goshima, G
    Saitoh, S
    Yanagida, M
    [J]. GENES & DEVELOPMENT, 1999, 13 (13) : 1664 - 1677
  • [10] Human centromere chromatin protein hMis12, essential for equal segregation, is independent of CENP-A loading pathway
    Goshima, G
    Kiyomitsu, T
    Yoda, K
    Yanagida, M
    [J]. JOURNAL OF CELL BIOLOGY, 2003, 160 (01) : 25 - 39