Ultralow-voltage operation of light-emitting diodes

被引:49
作者
Lian, Yaxiao [1 ]
Lan, Dongchen [2 ,3 ]
Xing, Shiyu [1 ]
Guo, Bingbing [1 ]
Ren, Zhixiang [1 ]
Lai, Runchen [1 ]
Zou, Chen [1 ]
Zhao, Baodan [1 ,4 ]
Friend, Richard H. [4 ]
Di, Dawei [1 ,4 ]
机构
[1] Zhejiang Univ, Coll Opt Sci & Engn, Int Res Ctr Adv Photon, State Key Lab Modern Opt Instrumentat, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ, Coll Elect Engn, Hangzhou 310027, Peoples R China
[3] Univ New South Wales, Australian Ctr Adv Photovolta, Sydney, NSW 2052, Australia
[4] Univ Cambridge, Cavendish Lab, JJ Thomson Ave, Cambridge CB3 0HE, England
基金
英国工程与自然科学研究理事会; 中国国家自然科学基金;
关键词
ELECTROLUMINESCENCE; DEVICES; BLUE;
D O I
10.1038/s41467-022-31478-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
For a light-emitting diode (LED) to generate light, the minimum voltage required is widely considered to be the emitter's bandgap divided by the elementary charge. Here we show for many classes of LEDs, including those based on perovskite, organic, quantum-dot and III-V semiconductors, light emission can be observed at record-low voltages of 36-60% of their bandgaps, exhibiting a large apparent energy gain of 0.6-1.4 eV per photon. For 17 types of LEDs with different modes of charge injection and recombination (dark saturation currents of -10(-39)-10(-15) mA cm(-2)), their emission intensity-voltage curves under low voltages show similar behaviours. These observations and their consistency with the diode simulations suggest the ultralow-voltage electroluminescence arises from a universal origin-the radiative recombination of non-thermal-equilibrium band-edge carriers whose populations are determined by the Fermi-Dirac function perturbed by a small external bias. These results indicate the potential of low-voltage LEDs for communications, computational and energy applications.
引用
收藏
页数:10
相关论文
共 60 条
[31]   Distribution control enables efficient reduced-dimensional perovskite LEDs [J].
Ma, Dongxin ;
Lin, Kebin ;
Dong, Yitong ;
Choubisa, Hitarth ;
Proppe, Andrew H. ;
Wu, Dan ;
Wang, Ya-Kun ;
Chen, Bin ;
Li, Peicheng ;
Fan, James Z. ;
Yuan, Fanglong ;
Johnston, Andrew ;
Liu, Yuan ;
Kang, Yuetong ;
Lu, Zheng-Hong ;
Wei, Zhanhua ;
Sargent, Edward H. .
NATURE, 2021, 599 (7886) :594-+
[32]  
Mashford BS, 2013, NAT PHOTONICS, V7, P407, DOI [10.1038/nphoton.2013.70, 10.1038/NPHOTON.2013.70]
[33]   CANDELA-CLASS HIGH-BRIGHTNESS INGAN/ALGAN DOUBLE-HETEROSTRUCTURE BLUE-LIGHT-EMITTING DIODES [J].
NAKAMURA, S ;
MUKAI, T ;
SENOH, M .
APPLIED PHYSICS LETTERS, 1994, 64 (13) :1687-1689
[34]   Rubrene/fullerene heterostructures with a half-gap electroluminescence threshold and large photovoltage [J].
Pandey, Ajay K. ;
Nunzi, Jean-Michel .
ADVANCED MATERIALS, 2007, 19 (21) :3613-+
[35]  
Parshin M. A., 2006, SPIE, P419
[36]   NItride-based semiconductors for blue and green light-emitting devices [J].
Ponce, FA ;
Bour, DP .
NATURE, 1997, 386 (6623) :351-359
[37]   Electrochemically-stable ligands bridge the photoluminescence-electroluminescence gap of quantum dots [J].
Pu, Chaodan ;
Dai, Xingliang ;
Shu, Yufei ;
Zhu, Meiyi ;
Deng, Yunzhou ;
Jin, Yizheng ;
Peng, Xiaogang .
NATURE COMMUNICATIONS, 2020, 11 (01)
[38]  
Qian L, 2011, NAT PHOTONICS, V5, P543, DOI [10.1038/NPHOTON.2011.171, 10.1038/nphoton.2011.171]
[39]   Triplet-triplet annihilation effects in rubrene/C60 OLEDs with electroluminescence turn-on breaking the thermodynamic limit [J].
Qiao, Xianfeng ;
Ma, Dongge .
NATURE COMMUNICATIONS, 2019, 10 (1)
[40]   Thermophotonic cooling with light-emitting diodes [J].
Sadi, Toufik ;
Radevici, Ivan ;
Oksanen, Jani .
NATURE PHOTONICS, 2020, 14 (04) :205-214