Automated White Matter Hyperintensity Segmentation Using Bayesian Model Selection: Assessment and Correlations with Cognitive Change

被引:17
作者
Fiford, Cassidy M. [1 ]
Sudre, Carole H. [1 ,2 ,3 ]
Pemberton, Hugh [1 ]
Walsh, Phoebe [1 ]
Manning, Emily [1 ]
Malone, Ian B. [1 ]
Nicholas, Jennifer [4 ]
Bouvy, Willem H. [5 ]
Carmichael, Owen T. [6 ]
Biessels, Geert Jan [5 ]
Cardoso, M. Jorge [1 ,2 ,3 ]
Barnes, Josephine [1 ]
机构
[1] UCL Queen Sq Inst Neurol, Dementia Res Ctr, Dept Neurodegenerat Dis, London, England
[2] Kings Coll London, Sch Biomed Engn & Imaging Sci, London, England
[3] UCL, Dept Med Phys & Biomed Engn, London, England
[4] London Sch Hyg & Trop Med, London, England
[5] Univ Med Ctr Utrecht, Brain Ctr Rudolf Magnus, Dept Neurol & Neurosurg, Utrecht, Netherlands
[6] Pennington Biomed Res Ctr, 6400 Perkins Rd, Baton Rouge, LA 70808 USA
基金
英国工程与自然科学研究理事会; 加拿大健康研究院; 美国国家卫生研究院;
关键词
White matter hyperintensities; Automated segmentation; Magnetic resonance imaging; Neurodegeneration; Vascular pathology; Alzheimer's disease; MR-IMAGES; DISEASE; BRAIN; CLASSIFICATION; PROGRESSION; ATROPHY; INTENSITY; LESIONS; RISK; ADNI;
D O I
10.1007/s12021-019-09439-6
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Accurate, automated white matter hyperintensity (WMH) segmentations are needed for large-scale studies to understand contributions of WMH to neurological diseases. We evaluated Bayesian Model Selection (BaMoS), a hierarchical fully-unsupervised model selection framework for WMH segmentation. We compared BaMoS segmentations to semi-automated segmentations, and assessed whether they predicted longitudinal cognitive change in control, early Mild Cognitive Impairment (EMCI), late Mild Cognitive Impairment (LMCI), subjective/significant memory concern (SMC) and Alzheimer's (AD) participants. Data were downloaded from the Alzheimer's disease Neuroimaging Initiative (ADNI). Magnetic resonance images from 30 control and 30 AD participants were selected to incorporate multiple scanners, and were semi-automatically segmented by 4 raters and BaMoS. Segmentations were assessed using volume correlation, Dice score, and other spatial metrics. Linear mixed-effect models were fitted to 180 control, 107 SMC, 320 EMCI, 171 LMCI and 151 AD participants separately in each group, with the outcomes being cognitive change (e.g. mini-mental state examination; MMSE), and BaMoS WMH, age, sex, race and education used as predictors. There was a high level of agreement between BaMoS' WMH segmentation volumes and a consensus of rater segmentations, with a median Dice score of 0.74 and correlation coefficient of 0.96. BaMoS WMH predicted cognitive change in: control, EMCI, and SMC groups using MMSE; LMCI using clinical dementia rating scale; and EMCI using Alzheimer's disease assessment scale-cognitive subscale (p < 0.05, all tests). BaMoS compares well to semi-automated segmentation, is robust to different WMH loads and scanners, and can generate volumes which predict decline. BaMoS can be applicable to further large-scale studies.
引用
收藏
页码:429 / 449
页数:21
相关论文
共 42 条
[1]   Fully automatic segmentation of white matter hyperintensities in MR images of the elderly [J].
Admiraal-Behloul, F ;
van den Heuvel, DMJ ;
Olofsen, H ;
van Osch, MJP ;
van der Grond, J ;
van Buchem, MA ;
Relber, JHC .
NEUROIMAGE, 2005, 28 (03) :607-617
[2]   Probabilistic segmentation of white lesions in MR imaging [J].
Anbeek, P ;
Vincken, KL ;
van Osch, MJP ;
Bisschops, RHC ;
van der Grond, J .
NEUROIMAGE, 2004, 21 (03) :1037-1044
[3]  
Bakshi R, 2000, AM J NEURORADIOL, V21, P503
[4]   Vascular and Alzheimer's disease markers independently predict brain atrophy rate in Alzheimer's Disease Neuroimaging Initiative controls [J].
Barnes, Josephine ;
Carmichael, Owen T. ;
Leung, Kelvin K. ;
Schwarz, Christopher ;
Ridgway, Gerard R. ;
Bartlett, Jonathan W. ;
Malone, Ian B. ;
Schott, Jonathan M. ;
Rossor, Martin N. ;
Biessels, Geert Jan ;
DeCarli, Charlie ;
Fox, Nick C. .
NEUROBIOLOGY OF AGING, 2013, 34 (08) :1996-2002
[5]   Development and validation of morphological segmentation of age-related cerebral white matter hyperintensities [J].
Beare, Richard ;
Srikanth, Velandai ;
Chen, Jian ;
Phan, Thanh G. ;
Stapleton, Jennifer ;
Lipshut, Rebecca ;
Reutens, David .
NEUROIMAGE, 2009, 47 (01) :199-203
[6]   White Matter Hyperintensities Relate to Clinical Progression in Subjective Cognitive Decline [J].
Benedictus, Marije R. ;
van Harten, Argonde C. ;
Leeuwis, Annebet E. ;
Koene, Teddy ;
Scheltens, Philip ;
Barkhof, Frederik ;
Prins, Niels D. ;
van der Flier, Wiesje M. .
STROKE, 2015, 46 (09) :2661-2664
[7]   Delphi definition of the EADC-ADNI Harmonized Protocol for hippocampal segmentation on magnetic resonance [J].
Boccardi, Marina ;
Bocchetta, Martina ;
Apostolova, Liana G. ;
Barnes, Josephine ;
Bartzokis, George ;
Corbetta, Gabriele ;
DeCarli, Charles ;
deToledo-Morrell, Leyla ;
Firbank, Michael ;
Ganzola, Rossana ;
Gerritsen, Lotte ;
Henneman, Wouter ;
Killiany, Ronald J. ;
Malykhin, Nikolai ;
Pasqualetti, Patrizio ;
Pruessner, Jens C. ;
Redolfi, Alberto ;
Robitaille, Nicolas ;
Soininen, Hilkka ;
Tolomeo, Daniele ;
Wang, Lei ;
Watson, Craig ;
Wolf, Henrike ;
Duvernoy, Henri ;
Duchesne, Simon ;
Jack, Clifford R., Jr. ;
Frisoni, Giovanni B. .
ALZHEIMERS & DEMENTIA, 2015, 11 (02) :126-138
[8]   Automatic Detection of White Matter Hyperintensities in Healthy Aging and Pathology Using Magnetic Resonance Imaging: A Review [J].
Caligiuri, Maria Eugenia ;
Perrotta, Paolo ;
Augimeri, Antonio ;
Rocca, Federico ;
Quattrone, Aldo ;
Cherubini, Andrea .
NEUROINFORMATICS, 2015, 13 (03) :261-276
[9]   Geodesic Information Flows: Spatially-Variant Graphs and Their Application to Segmentation and Fusion [J].
Cardoso, M. Jorge ;
Modat, Marc ;
Wolz, Robin ;
Melbourne, Andrew ;
Cash, David ;
Rueckert, Daniel ;
Ourselin, Sebastien .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2015, 34 (09) :1976-1988
[10]   Longitudinal Changes in White Matter Disease and Cognition in the First Year of the Alzheimer Disease Neuroimaging Initiative [J].
Carmichael, Owen ;
Schwarz, Christopher ;
Drucker, David ;
Fletcher, Evan ;
Harvey, Danielle ;
Beckett, Laurel ;
Jack, Clifford R. ;
Weiner, Michael ;
DeCarli, Charles .
ARCHIVES OF NEUROLOGY, 2010, 67 (11) :1370-1378