Automated White Matter Hyperintensity Segmentation Using Bayesian Model Selection: Assessment and Correlations with Cognitive Change

被引:17
作者
Fiford, Cassidy M. [1 ]
Sudre, Carole H. [1 ,2 ,3 ]
Pemberton, Hugh [1 ]
Walsh, Phoebe [1 ]
Manning, Emily [1 ]
Malone, Ian B. [1 ]
Nicholas, Jennifer [4 ]
Bouvy, Willem H. [5 ]
Carmichael, Owen T. [6 ]
Biessels, Geert Jan [5 ]
Cardoso, M. Jorge [1 ,2 ,3 ]
Barnes, Josephine [1 ]
机构
[1] UCL Queen Sq Inst Neurol, Dementia Res Ctr, Dept Neurodegenerat Dis, London, England
[2] Kings Coll London, Sch Biomed Engn & Imaging Sci, London, England
[3] UCL, Dept Med Phys & Biomed Engn, London, England
[4] London Sch Hyg & Trop Med, London, England
[5] Univ Med Ctr Utrecht, Brain Ctr Rudolf Magnus, Dept Neurol & Neurosurg, Utrecht, Netherlands
[6] Pennington Biomed Res Ctr, 6400 Perkins Rd, Baton Rouge, LA 70808 USA
基金
美国国家卫生研究院; 英国工程与自然科学研究理事会; 加拿大健康研究院;
关键词
White matter hyperintensities; Automated segmentation; Magnetic resonance imaging; Neurodegeneration; Vascular pathology; Alzheimer's disease; MR-IMAGES; DISEASE; BRAIN; CLASSIFICATION; PROGRESSION; ATROPHY; INTENSITY; LESIONS; RISK; ADNI;
D O I
10.1007/s12021-019-09439-6
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Accurate, automated white matter hyperintensity (WMH) segmentations are needed for large-scale studies to understand contributions of WMH to neurological diseases. We evaluated Bayesian Model Selection (BaMoS), a hierarchical fully-unsupervised model selection framework for WMH segmentation. We compared BaMoS segmentations to semi-automated segmentations, and assessed whether they predicted longitudinal cognitive change in control, early Mild Cognitive Impairment (EMCI), late Mild Cognitive Impairment (LMCI), subjective/significant memory concern (SMC) and Alzheimer's (AD) participants. Data were downloaded from the Alzheimer's disease Neuroimaging Initiative (ADNI). Magnetic resonance images from 30 control and 30 AD participants were selected to incorporate multiple scanners, and were semi-automatically segmented by 4 raters and BaMoS. Segmentations were assessed using volume correlation, Dice score, and other spatial metrics. Linear mixed-effect models were fitted to 180 control, 107 SMC, 320 EMCI, 171 LMCI and 151 AD participants separately in each group, with the outcomes being cognitive change (e.g. mini-mental state examination; MMSE), and BaMoS WMH, age, sex, race and education used as predictors. There was a high level of agreement between BaMoS' WMH segmentation volumes and a consensus of rater segmentations, with a median Dice score of 0.74 and correlation coefficient of 0.96. BaMoS WMH predicted cognitive change in: control, EMCI, and SMC groups using MMSE; LMCI using clinical dementia rating scale; and EMCI using Alzheimer's disease assessment scale-cognitive subscale (p < 0.05, all tests). BaMoS compares well to semi-automated segmentation, is robust to different WMH loads and scanners, and can generate volumes which predict decline. BaMoS can be applicable to further large-scale studies.
引用
收藏
页码:429 / 449
页数:21
相关论文
共 42 条
  • [1] Fully automatic segmentation of white matter hyperintensities in MR images of the elderly
    Admiraal-Behloul, F
    van den Heuvel, DMJ
    Olofsen, H
    van Osch, MJP
    van der Grond, J
    van Buchem, MA
    Relber, JHC
    [J]. NEUROIMAGE, 2005, 28 (03) : 607 - 617
  • [2] Probabilistic segmentation of white lesions in MR imaging
    Anbeek, P
    Vincken, KL
    van Osch, MJP
    Bisschops, RHC
    van der Grond, J
    [J]. NEUROIMAGE, 2004, 21 (03) : 1037 - 1044
  • [3] Bakshi R, 2000, AM J NEURORADIOL, V21, P503
  • [4] Vascular and Alzheimer's disease markers independently predict brain atrophy rate in Alzheimer's Disease Neuroimaging Initiative controls
    Barnes, Josephine
    Carmichael, Owen T.
    Leung, Kelvin K.
    Schwarz, Christopher
    Ridgway, Gerard R.
    Bartlett, Jonathan W.
    Malone, Ian B.
    Schott, Jonathan M.
    Rossor, Martin N.
    Biessels, Geert Jan
    DeCarli, Charlie
    Fox, Nick C.
    [J]. NEUROBIOLOGY OF AGING, 2013, 34 (08) : 1996 - 2002
  • [5] Development and validation of morphological segmentation of age-related cerebral white matter hyperintensities
    Beare, Richard
    Srikanth, Velandai
    Chen, Jian
    Phan, Thanh G.
    Stapleton, Jennifer
    Lipshut, Rebecca
    Reutens, David
    [J]. NEUROIMAGE, 2009, 47 (01) : 199 - 203
  • [6] White Matter Hyperintensities Relate to Clinical Progression in Subjective Cognitive Decline
    Benedictus, Marije R.
    van Harten, Argonde C.
    Leeuwis, Annebet E.
    Koene, Teddy
    Scheltens, Philip
    Barkhof, Frederik
    Prins, Niels D.
    van der Flier, Wiesje M.
    [J]. STROKE, 2015, 46 (09) : 2661 - 2664
  • [7] Delphi definition of the EADC-ADNI Harmonized Protocol for hippocampal segmentation on magnetic resonance
    Boccardi, Marina
    Bocchetta, Martina
    Apostolova, Liana G.
    Barnes, Josephine
    Bartzokis, George
    Corbetta, Gabriele
    DeCarli, Charles
    deToledo-Morrell, Leyla
    Firbank, Michael
    Ganzola, Rossana
    Gerritsen, Lotte
    Henneman, Wouter
    Killiany, Ronald J.
    Malykhin, Nikolai
    Pasqualetti, Patrizio
    Pruessner, Jens C.
    Redolfi, Alberto
    Robitaille, Nicolas
    Soininen, Hilkka
    Tolomeo, Daniele
    Wang, Lei
    Watson, Craig
    Wolf, Henrike
    Duvernoy, Henri
    Duchesne, Simon
    Jack, Clifford R., Jr.
    Frisoni, Giovanni B.
    [J]. ALZHEIMERS & DEMENTIA, 2015, 11 (02) : 126 - 138
  • [8] Automatic Detection of White Matter Hyperintensities in Healthy Aging and Pathology Using Magnetic Resonance Imaging: A Review
    Caligiuri, Maria Eugenia
    Perrotta, Paolo
    Augimeri, Antonio
    Rocca, Federico
    Quattrone, Aldo
    Cherubini, Andrea
    [J]. NEUROINFORMATICS, 2015, 13 (03) : 261 - 276
  • [9] Geodesic Information Flows: Spatially-Variant Graphs and Their Application to Segmentation and Fusion
    Cardoso, M. Jorge
    Modat, Marc
    Wolz, Robin
    Melbourne, Andrew
    Cash, David
    Rueckert, Daniel
    Ourselin, Sebastien
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2015, 34 (09) : 1976 - 1988
  • [10] Longitudinal Changes in White Matter Disease and Cognition in the First Year of the Alzheimer Disease Neuroimaging Initiative
    Carmichael, Owen
    Schwarz, Christopher
    Drucker, David
    Fletcher, Evan
    Harvey, Danielle
    Beckett, Laurel
    Jack, Clifford R.
    Weiner, Michael
    DeCarli, Charles
    [J]. ARCHIVES OF NEUROLOGY, 2010, 67 (11) : 1370 - 1378