Recovery of CuO/C catalyst from spent anode material in battery to activate peroxymonosulfate for refractory organic contaminants degradation

被引:93
作者
Zhao, Yanlan [1 ,2 ]
Wang, Hou [1 ,2 ]
Li, Xiaodong [1 ,2 ]
Yuan, Xingzhong [1 ,2 ]
Jiang, Longbo [1 ,2 ]
Chen, Xuwu [1 ,2 ]
机构
[1] Hunan Univ, Coll Environm Sci & Engn, Changsha 410082, Hunan, Peoples R China
[2] Hunan Univ, Key Lab Environm Biol & Pollut Control, Minist Educ, Changsha 410082, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Spent Lithium-ion batteries; Anode material; Peroxymonosulfate; Advanced oxidation process; Refractory organic contaminants; LITHIUM-ION BATTERIES; ENHANCED DEGRADATION; RECYCLING LITHIUM; PERSULFATE; OXIDATION; GRAPHITE; PERFORMANCE; LICOO2;
D O I
10.1016/j.jhazmat.2021.126552
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
It is critical to developing low-cost and efficient catalysts to activate peroxymonosulfate for the degradation of organic contaminants, whereas it remains challenging. In the study, a recycle method to synthesize efficient heterogeneous catalysts was developed by exploiting the anode electrode of spent lithium-ion batteries as the raw material based on a one-step calcination process. The recycled anode material (AM) composed of copper oxide and graphite carbon was capable of efficiently activating peroxymonosulfate (PMS) to degrade a wide range of organic contaminants. In addition, an investigation was conducted on the effect of reactive parameters (e.g., catalyst dose, PMS dose, RhB concentration, and coexisting matters). Besides, the AM/PMS process could exhibit high effectiveness at a broad pH range (3-10) and in a real water matrix. The redox cycle of Cu(II)/Cu(I) in the AM acted as the predominated force to effectively facilitate the PMS activation for the formation of oxygen species, in which the SO4 center dot- and O-1(2) exerted a primary effect. Moreover, the non-radical pathway of electron transfer between RhB and PMS facilitated the removal of RhB. In this study, a reclamation approach was developed for the recycling of spent LIBs anodes, and insights into the development of catalysts in SR-AOPs were gained.
引用
收藏
页数:13
相关论文
共 53 条
[1]  
Anh Nguyen T.H., 2020, WASTE MANAG
[2]   A Comprehensive Review of the Advancement in Recycling the Anode and Electrolyte from Spent Lithium Ion Batteries [J].
Arshad, Faiza ;
Li, Li ;
Amin, Kamran ;
Fan, Ersha ;
Manurkar, Nagesh ;
Ahmad, Ali ;
Yang, Jingbo ;
Wu, Feng ;
Chen, Renjie .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (36) :13527-13554
[3]   Energy and environmental aspects in recycling lithium-ion batteries: Concept of Battery Identity Global Passport [J].
Bai, Yaocai ;
Muralidharan, Nitin ;
Sun, Yang-Kook ;
Passerini, Stefano ;
Whittingham, M. Stanley ;
Belharouak, Ilias .
MATERIALS TODAY, 2020, 41 :304-315
[4]   Insight into heterogeneous catalytic degradation of sulfamethazine by peroxymonosulfate activated with CuCo2O4 derived from bimetallic oxalate [J].
Chen, Cheng ;
Liu, Li ;
Li, Yuxin ;
Li, Wei ;
Zhou, Lixiang ;
Lan, Yeqing ;
Li, Ying .
CHEMICAL ENGINEERING JOURNAL, 2020, 384
[5]   Efficient degradation and mineralization of antibiotics via heterogeneous activation of peroxymonosulfate by using graphene supported single -atom Cu catalyst [J].
Chen, Feng ;
Wu, Xi-Lin ;
Yang, Liu ;
Chen, Chaofa ;
Lin, Hongjun ;
Chen, Jianrong .
CHEMICAL ENGINEERING JOURNAL, 2020, 394
[6]   Removal of tetracycline via the synergistic effect of biochar adsorption and enhanced activation of persulfate [J].
Chen, Junhao ;
Yu, Xiaolu ;
Li, Cheng ;
Tang, Xin ;
Sun, Ying .
CHEMICAL ENGINEERING JOURNAL, 2020, 382
[7]   Graphitic biochar catalysts from anaerobic digestion sludge for nonradical degradation of micropollutants and disinfection [J].
Chen, Yi-di ;
Duan, Xiaoguang ;
Zhang, Chaofan ;
Wang, Shaobin ;
Ren, Nan-qi ;
Ho, Shih-Hsin .
CHEMICAL ENGINEERING JOURNAL, 2020, 384
[8]   Synergistic oxidation of Bisphenol A in a heterogeneous ultrasound-enhanced sludge biochar catalyst/persulfate process: Reactivity and mechanism [J].
Diao, Zeng-Hui ;
Dong, Fu-Xin ;
Yan, Liu ;
Chen, Zhi-Liang ;
Qian, Wei ;
Kong, Ling-Jun ;
Zhang, Zai-Wang ;
Zhang, Tao ;
Tao, Xue-Qin ;
Du, Jian-Jun ;
Jiang, Dan ;
Chu, Wei .
JOURNAL OF HAZARDOUS MATERIALS, 2020, 384
[9]   Nitrogen-doping positively whilst sulfur-doping negatively affect the catalytic activity of biochar for the degradation of organic contaminant [J].
Ding, Dahu ;
Yang, Shengjiong ;
Qian, Xiaoyong ;
Chen, Liwei ;
Cai, Tianming .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 263
[10]   Sulfate saturated biosorbent-derived Co-S@NC nanoarchitecture as an efficient catalyst for peroxymonosulfate activation [J].
Du, Weiyan ;
Zhang, Qingzhu ;
Shang, Yanan ;
Wang, Wei ;
Li, Qian ;
Yue, Qinyan ;
Gao, Baoyu ;
Xu, Xing .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 262