On Computation of Minimum Distance of Linear Block Codes Above 1/2 Rate Coding

被引:1
|
作者
Bhattar, Raghunadh K. [1 ]
Ramakrishnan, K. R. [1 ]
Dasgupta, K. S. [2 ]
机构
[1] Indian Inst Sci, EE Dept, Bangalore 560012, Karnataka, India
[2] ISRO, Space Appl Ctr, Ahmadabad, Gujarat, India
来源
2010 IEEE INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, NETWORKING AND INFORMATION SECURITY (WCNIS), VOL 2 | 2010年
关键词
Minimum distance; Linear block codes; Information sets; Generalized inverse; INTRACTABILITY; ALGORITHM;
D O I
10.1109/WCINS.2010.5541937
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The minimum distance of linear block codes is one of the important parameter that indicates the error performance of the code. When the code rate is less than 1/2, efficient algorithms are available for finding minimum distance using the concept of information sets. When the code rate is greater than 1/2, only one information set is available and efficiency suffers. In this paper, we investigate and propose a novel algorithm to find the minimum distance of linear block codes with the code rate greater than 1/2. We propose to reverse the roles of information set and parity set to get virtually another information set to improve the efficiency. This method is 67.7 times faster than the minimum distance algorithm implemented in MAGMA Computational Algebra System for a (80, 45) linear block code.
引用
收藏
页码:280 / +
页数:2
相关论文
共 50 条
  • [1] On Fast Exhaustive Search of the Minimum Distance of Linear Block Codes
    Broulim, Jan
    Georgiev, Vjaceslav
    Boulgouris, Nikolaos V.
    2016 8TH INTERNATIONAL CONGRESS ON ULTRA MODERN TELECOMMUNICATIONS AND CONTROL SYSTEMS AND WORKSHOPS (ICUMT), 2016, : 342 - 345
  • [2] An Efficient method to find the Minimum Distance of Linear Block Codes
    Askali, Mohamed
    Nouh, Said
    Belkasmi, Mostafa
    2012 INTERNATIONAL CONFERENCE ON MULTIMEDIA COMPUTING AND SYSTEMS (ICMCS), 2012, : 773 - 779
  • [3] Minimum distance computation of linear codes via genetic algorithms with permutation encoding
    Gomez-Torrecillas, Jose
    Lobillo, F. J.
    Navarro, Gabriel
    ACM COMMUNICATIONS IN COMPUTER ALGEBRA, 2018, 52 (03): : 71 - 74
  • [4] An algorithm for the computation of the minimum distance of LDPC codes
    Daneshgaran, F
    Laddomada, M
    Mondin, M
    EUROPEAN TRANSACTIONS ON TELECOMMUNICATIONS, 2006, 17 (01): : 57 - 62
  • [5] Minimum distance of linear codes and the α-invariant
    Garrousian, Mehdi
    Tohaneanu, Stefan O.
    ADVANCES IN APPLIED MATHEMATICS, 2015, 71 : 190 - 207
  • [6] On computing the minimum distance of linear codes
    Mohri, Masami
    Morii, Masakatu
    Electronics and Communications in Japan, Part III: Fundamental Electronic Science (English translation of Denshi Tsushin Gakkai Ronbunshi), 2000, 83 (11): : 32 - 42
  • [7] On computing the minimum distance of linear codes
    Mohri, M
    Morii, M
    ELECTRONICS AND COMMUNICATIONS IN JAPAN PART III-FUNDAMENTAL ELECTRONIC SCIENCE, 2000, 83 (11): : 32 - 42
  • [8] 3 BEST BINARY LINEAR BLOCK-CODES OF MINIMUM DISTANCE 15
    FARKAS, P
    BRUHL, K
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1994, 40 (03) : 949 - 951
  • [9] Linear Block and Convolutional MDS Codes to Required Rate, Distance and Type
    Hurley, Ted
    INTELLIGENT COMPUTING, VOL 2, 2022, 507 : 129 - 157
  • [10] NET CODING GAIN OF SOME RATE 1/2 BLOCK-CODES
    BHARGAVA, VK
    AVNI, M
    IEE PROCEEDINGS-F RADAR AND SIGNAL PROCESSING, 1983, 130 (04) : 325 - 330