Safe Path Planning with Multi-Model Risk Level Sets

被引:5
作者
Huang, Zefan [1 ]
Schwarting, Wilko [2 ]
Pierson, Alyssa [2 ]
Guo, Hongliang [1 ]
Ang, Marcelo, Jr. [3 ]
Rus, Daniela [2 ]
机构
[1] Singapore MIT Alliance Res & Technol, Singapore, Singapore
[2] Mas Sachusetts Inst Technol, Comp Sci & Artificial Intelligence Lab, Cambridge, MA 02139 USA
[3] Natl Univ Singapore, Singapore, Singapore
来源
2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS) | 2020年
基金
新加坡国家研究基金会; 美国国家科学基金会;
关键词
MOTION; ALGORITHMS; OBSTACLES;
D O I
10.1109/IROS45743.2020.9341084
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper investigates the safe path planning problem for an autonomous vehicle operating in unstructured, cluttered environments. While some objects may be accurately with canonical perception algorithms, other objects and clutter may be harder to track. We present an approach that combines two methods of risk assessment: for objects with reliable tracking, we use a Gaussian Process (GP) regulated risk map to describe the risk map information; for unknown objects that we fail to accurately track, we compute a Dynamic Risk Density (DRD) from the overall occupancy and velocity field from LiDAR scan snapshots. Several methods are proposed for combining the GP risk map and DRD, and the resultant hybrid risk map is used for the proposed safe path planning algorithm. Experimental results on an autonomous buggy show that the hybrid risk map is able to yield a safe path planner to navigate the autonomous testbed within the cluttered environments.
引用
收藏
页码:6268 / 6275
页数:8
相关论文
共 38 条
  • [1] Ames AD, 2014, IEEE DECIS CONTR P, P6271, DOI 10.1109/CDC.2014.7040372
  • [2] Andersen Hans, 2017, IEEE INT C INTELLIGE
  • [3] Probabilistically safe motion planning to avoid dynamic obstacles with uncertain motion patterns
    Aoude, Georges S.
    Luders, Brandon D.
    Joseph, Joshua M.
    Roy, Nicholas
    How, Jonathan P.
    [J]. AUTONOMOUS ROBOTS, 2013, 35 (01) : 51 - 76
  • [4] Discrete abstractions for robot motion planning and control in polygonal environments
    Belta, C
    Isler, V
    Pappas, GJ
    [J]. IEEE TRANSACTIONS ON ROBOTICS, 2005, 21 (05) : 864 - 874
  • [5] Berkenkamp F, 2017, ADV NEUR IN, V30
  • [6] Borrmann Urs, 2015, IFAC - Papers Online, V48, P68, DOI 10.1016/j.ifacol.2015.11.154
  • [7] Bouraine S., 2016, CSA 2 C COMP SYST AP
  • [8] Brock O, 1999, ICRA '99: IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1-4, PROCEEDINGS, P341, DOI 10.1109/ROBOT.1999.770002
  • [9] Dijkstra EW., 1959, NUMER MATH, V1, P269, DOI 10.1007/BF01386390
  • [10] Robot Motion Planning in Dynamic, Uncertain Environments
    Du Toit, Noel E.
    Burdick, Joel W.
    [J]. IEEE TRANSACTIONS ON ROBOTICS, 2012, 28 (01) : 101 - 115