TWINS OF k-FREE NUMBERS IN ARITHMETIC PROGRESSIONS

被引:1
作者
Meng, Z. [1 ]
机构
[1] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
关键词
k-free number; Hurwitz zeta function; Hardy-Littlewood method; EXPONENTIAL SUM;
D O I
10.1007/s10474-010-0006-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a new upper bound of Barban-Davenport-Halberstam type for twins of k-free numbers in arithmetic progressions.
引用
收藏
页码:223 / 253
页数:31
相关论文
共 9 条
  • [1] [Anonymous], 1952, THEORY FUNCTIONS
  • [2] On the exponential sum over k-free numbers
    Brudern, J
    Granville, A
    Perelli, A
    Vaughan, RC
    Wooley, TD
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1998, 356 (1738): : 739 - 761
  • [3] Twins of k-free numbers and their exponential sum
    Brüdern, J
    Perelli, A
    Wooley, TD
    [J]. MICHIGAN MATHEMATICAL JOURNAL, 2000, 47 (01) : 173 - 190
  • [4] ESTERMANN T, 1930, P LOND MATH SOC, V31, P123
  • [5] Some new results on k-free numbers
    Meng, Zaizhao
    [J]. JOURNAL OF NUMBER THEORY, 2006, 121 (01) : 45 - 66
  • [6] PAN CD, 1997, FDN ANAL NUMBER THEO
  • [7] TITCHMARSH EC, 1986, THEORY RIEMANN ZETA
  • [8] A variance for k-free numbers in arithmetic progressions
    Vaughan, R. C.
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2005, 91 : 573 - 597
  • [9] Vaughan R. C., 1997, HARDY LITTLEWOOD MET, V125