共 76 条
Probing aromatic, hydrophobic, and steric effects on the self-assembly of an amyloid-β fragment peptide
被引:85
作者:
Senguen, F. Timur
[1
]
Lee, Naomi R.
[1
]
Gu, Xianfeng
[2
]
Ryan, Derek M.
[1
]
Doran, Todd M.
[1
]
Anderson, Elizabeth A.
[1
]
Nilsson, Bradley L.
[1
]
机构:
[1] Univ Rochester, Dept Chem, Rochester, NY 14627 USA
[2] Fudan Univ, Sch Pharm, Shanghai 201301, Peoples R China
基金:
美国国家科学基金会;
关键词:
SOLID-STATE NMR;
FIBRIL FORMATION;
COILED-COIL;
A-BETA(16-22) PEPTIDE;
PROTEIN AGGREGATION;
BUNDLE PROTEIN;
AMINO-ACIDS;
SIDE-CHAIN;
A-BETA;
POLYPEPTIDE;
D O I:
10.1039/c0mb00080a
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
Aromatic amino acids have been shown to promote self-assembly of amyloid peptides, although the basis for this amyloid-inducing behavior is not understood. We adopted the amyloid-beta 16-22 peptide (A beta(16-22), Ac-KLVFFAE-NH2) as a model to study the role of aromatic amino acids in peptide self-assembly. Ab(16-22) contains two consecutive Phe residues (19 and 20) in which Phe19 side chains form interstrand contacts in fibrils while Phe20 side chains interact with the side chain of Val18. The kinetic and thermodynamic effect of varying the hydrophobicity and aromaticity at positions 19 and 20 by mutation with Ala, Tyr, cyclohexylalanine (Cha), and pentafluorophenylalanine (F-5-Phe) (order of hydrophobicity is Ala < Tyr < Phe < F-5-Phe < Cha) was characterized. Ala and Tyr position 19 variants failed to undergo fibril formation at the peptide concentrations studied, but Cha and F5-Phe variants self-assembled at dramatically enhanced rates relative to wild-type. Cha mutation was thermodynamically stabilizing at position 20 (Delta Delta G = -0.2 kcal mol(-1) relative to wild-type) and destabilizing at position 19 (Delta Delta G = +0.2 kcal mol(-1)). Conversely, F5-Phe mutations were strongly stabilizing at both positions (Delta Delta G = -1.3 kcal mol (1) at 19, Delta Delta G = -0.9 kcal mol (1) at 20). The double Cha and F-5-Phe mutants showed that the thermodynamic effects were additive (Delta Delta G = 0 kcal mol(-1) for Cha19,20 and -2.1 kcal mol(-1) for F-5-Phe19,20). These results indicate that sequence hydrophobicity alone does not dictate amyloid potential, but that aromatic, hydrophobic, and steric considerations collectively influence fibril formation.
引用
收藏
页码:486 / 496
页数:11
相关论文