Weak type (1,1) bounds for a class of the Littlewood-Paley operators

被引:3
|
作者
Ding, Y [1 ]
Xue, QY
机构
[1] Beijing Normal Univ, Dept Math, Beijing 100875, Peoples R China
[2] Beijing Normal Univ, Dept Math, Beijing 100875, Peoples R China
关键词
Littlewood-Paley; g(lambda)(*) function; area integral; weak boundedness;
D O I
10.2969/jmsj/1160745821
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper the authors give the weak type (1,1) boundedness and the L-p boundedness of a class of the parametrized Littlewood-Paley operators. These conclusions improve and complete some known results.
引用
收藏
页码:183 / 194
页数:12
相关论文
共 50 条
  • [1] WEAK TYPE (1,1) BEHAVIOR FOR THE LITTLEWOOD-PALEY g-FUNCTION
    Lai, Xudong
    COLLOQUIUM MATHEMATICUM, 2023, 171 (02) : 285 - 302
  • [2] Weighted weak type (1,1) estimates for singular integrals and Littlewood-Paley functions
    Fan, D
    Sato, S
    STUDIA MATHEMATICA, 2004, 163 (02) : 119 - 136
  • [3] Weak (1,1) estimates for Littlewood-Paley functions with rough kernals
    Sato, S
    PROCEEDINGS OF THE SECOND ISAAC CONGRESS, VOLS 1 AND 2, 2000, 7 : 83 - 87
  • [4] Weak and Strong Type Estimates for the Multilinear Littlewood-Paley Operators
    Cao, Mingming
    Hormozi, Mahdi
    Ibanez-Firnkorn, Gonzalo
    Rivera-Rios, Israel P.
    Si, Zengyan
    Yabuta, Kozo
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2021, 27 (04)
  • [5] Weighted estimate for a class of Littlewood-Paley operators
    Xue, Qingying
    Ding, Yong
    Yabuta, Kozo
    TAIWANESE JOURNAL OF MATHEMATICS, 2007, 11 (02): : 339 - 365
  • [6] Commutators of Littlewood-Paley operators
    CHEN YanPing DING Yong Department of Mathematics and MechanicsApplied Science SchoolUniversity of Science and Technology BeijingBeijing China School of Mathematical SciencesBeijing Normal UniversityBeijing China Laboratory of Mathematics and Complex SystemsBNU Ministry of EducationBeijing China
    ScienceinChina(SeriesA:Mathematics), 2009, 52 (11) : 2493 - 2505
  • [7] Sharp asymptotic estimates for a class of Littlewood-Paley operators
    Bakas, Odysseas
    STUDIA MATHEMATICA, 2021, 260 (02) : 195 - 206
  • [8] On multilinear Littlewood-Paley operators
    Chen, Xi
    Xue, Qingying
    Yabuta, Kozo
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 115 : 25 - 40
  • [9] Commutators of Littlewood-Paley operators
    Chen YanPing
    Ding Yong
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2009, 52 (11): : 2493 - 2505
  • [10] Commutators of Littlewood-Paley operators
    CHEN YanPing1 & DING Yong2
    Science China Mathematics, 2009, (11) : 2493 - 2505