Commutator groups of orthogonal groups over the reals with emphasis on Lorentz groups

被引:0
作者
Knueppel, Frieder [1 ]
Nielsen, Klaus [1 ]
机构
[1] Univ Kiel, Rechenzentrum, Math Seminar, D-24098 Kiel, Germany
关键词
Orthogonal groups; Lorentz groups; Commutator-subgroup; Real elements; Products of involutions; Spinorial norm; Bi-reflectional; INVOLUTIONS; PRODUCTS;
D O I
10.1016/j.laa.2010.07.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Omega be the commutator subgroup of the n-dimensional Lorentz group. We give a criterion when an element of Omega is a product of 2 or 3 involutions of Omega. We prove that a real element of Omega is 2-reflectional. Then we study orthogonal groups over the reals with arbitrary signature. In this situation each real element in the kernel of the spinorial norm is 2-reflectional in the kernel of the spinorial norm. A main result states that the commutator group Omega(p, q) of an orthogonal group O(p, q) over the reals is 2-reflectional if and only if the signature (p, q) satisfies p, q, p q not equivalent to 2 mod 4. For all special orthogonal groups (over arbitrary fields) we prove that real elements are 2-reflectional. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:2111 / 2121
页数:11
相关论文
共 4 条
[1]  
Artin E., 1957, Geometric algebra, DOI 10.1002/9781118164518
[2]   ON PRODUCTS OF 2 INVOLUTIONS IN THE ORTHOGONAL GROUP OF A VECTOR-SPACE [J].
KNUPPEL, F ;
NIELSEN, K .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1987, 94 :209-216
[3]   PRODUCTS OF INVOLUTIONS IN O+ (V) [J].
KNUPPEL, F ;
NIELSEN, K .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1987, 94 :217-222
[4]  
Knuppel F, 1998, J AUST MATH SOC A, V65, P1