Solitary wave solutions, fusionable wave solutions, periodic wave solutions and interactional solutions of the (3+1)-dimensional generalized shallow water wave equation

被引:2
作者
Zhou, Ai-Juan [1 ]
He, Bing-Jie [1 ]
机构
[1] Shanghai Univ Engn Sci, Basic Teaching Dept, Shanghai 200434, Peoples R China
来源
MODERN PHYSICS LETTERS B | 2021年 / 35卷 / 23期
关键词
Solitary wave solution; fusionable wave solutions; periodic wave solutions; interactional solution; KADOMTSEV-PETVIASHVILI EQUATION; MULTISOLITON SOLUTIONS; EVOLUTION-EQUATIONS; RATIONAL SOLUTIONS; LINE SOLITON; LUMP; FORM;
D O I
10.1142/S0217984921503899
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this paper, we study exact solutions of the generalized shallow water wave equation. Based on the bilinear equation, we get N-solitary wave solutions. For special parameters, we find N-fusionable wave solutions. For complex parameters, periodic wave solutions and elastic interactional solutions of solitary waves with periodic waves are obtained. The properties of obtained exact solutions are also analyzed theoretically and graphically by using asymptotic analysis.
引用
收藏
页数:15
相关论文
共 43 条
[1]   Solutions of the Vector Nonlinear Schrodinger Equations: Evidence for Deterministic Rogue Waves [J].
Baronio, Fabio ;
Degasperis, Antonio ;
Conforti, Matteo ;
Wabnitz, Stefan .
PHYSICAL REVIEW LETTERS, 2012, 109 (04)
[2]   Soliton Solutions of the KP Equation and Application to Shallow Water Waves [J].
Chakravarty, S. ;
Kodama, Y. .
STUDIES IN APPLIED MATHEMATICS, 2009, 123 (01) :83-151
[3]   Soliton solutions of Burgers' equation and the modified Kadomtsev-Petviashvili equation [J].
Chen, Aihua ;
Wang, Fan-Fan ;
Zhang, Weiguo .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (36)
[4]   Multi-kink solutions and soliton fission and fusion of Sharma-Tasso-Olver equation [J].
Chen, Aihua .
PHYSICS LETTERS A, 2010, 374 (23) :2340-2345
[5]  
Dai CQ, 2017, NONLINEAR DYNAM, V87, P1675, DOI 10.1007/s11071-016-3143-0
[6]   Interaction of lumps with a line soliton for the DSII equation [J].
Fokas, AS ;
Pelinovsky, DE ;
Sulem, C .
PHYSICA D-NONLINEAR PHENOMENA, 2001, 152 :189-198
[7]   Backlund transformation and multi-soliton solutions for a (2+1)-dimensional Korteweg-de Vries system via symbolic computation [J].
Geng, Tao ;
Meng, Xiang-Hua ;
Shan, Wen-Rui ;
Tian, Bo .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (04) :1470-1475
[8]   N-soliton solution and its Wronskian form of a (3+1)-dimensional nonlinear evolution equation [J].
Geng, Xianguo ;
Ma, Yunling .
PHYSICS LETTERS A, 2007, 369 (04) :285-289
[9]   A DIRECT APPROACH TO MULTI-PERIODIC WAVE SOLUTIONS TO NON-LINEAR EVOLUTION-EQUATIONS [J].
HIROTA, R ;
ITO, M .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1981, 50 (01) :338-342
[10]   Evolution of dipole-type blocking life cycles: Analytical diagnoses and observations [J].
Huang, Fei ;
Tang, Xiaoyan ;
Lou, S. Y. ;
Lu, Cuihua .
JOURNAL OF THE ATMOSPHERIC SCIENCES, 2007, 64 (01) :52-73