Directionality of the Martian Surface Radiation and Derivation of the Upward Albedo Radiation

被引:8
作者
Guo, Jingnan [1 ,2 ,3 ]
Khaksarighiri, Salman [3 ]
Wimmer-Schweingruber, Robert F. [3 ]
Hassler, Donald M. [4 ]
Ehresmann, Bent [4 ]
Zeitlin, Cary [5 ]
Loeffler, Sven [3 ]
Matthiae, Daniel [6 ]
Berger, Thomas [6 ]
Reitz, Guenther [6 ]
Calef, Fred [7 ]
机构
[1] Univ Sci & Technol China, Sch Earth & Space Sci, Hefei, Peoples R China
[2] USTC, CAS Ctr Excellence Comparat Planetol, Hefei, Peoples R China
[3] Christian Albrechts Univev Kiel, Inst Expt & Appl Phys, Kiel, Germany
[4] Southwest Res Inst Boulder, Planetary Sci Div, Boulder, CO USA
[5] Leidos Corp, Houston, TX USA
[6] German Aerosp Ctr DLR, Inst Aerosp Med, Cologne, Germany
[7] CALTECH, Jet Prop Lab, Pasadina, CA USA
基金
中国国家自然科学基金;
关键词
space radiation; MSL mission; Mars exploration; albedo radiation; ASSESSMENT DETECTOR RAD; ENERGETIC PARTICLES; INTERACTION REGIONS; MARS; ENVIRONMENT; MODEL; EARTH;
D O I
10.1029/2021GL093912
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Since 2012 August, the Radiation Assessment Detector (RAD) on the Curiosity rover has been characterizing the Martian surface radiation field which is essential in preparation for future crewed Mars missions. RAD observed radiation dose is influenced by variable topographical features as the rover traverses through the terrain. In particular, while Curiosity was parked near a butte in the Murray Buttes area, we find a decrease of the dose rate by (5 +/- 1)% as 19% of the sky was obstructed, versus 10% in an average reference period. Combining a zenith-angle-dependent radiation model and the rover panoramic visibility map leads to a predicted reduction of the downward dose by similar to 12% due to the obstruction, larger than the observed decrease. With the hypothesis that this difference is attributable to albedo radiation coming from the butte, we estimate the (flat-terrain) albedo radiation to be about 19% of the total surface dose.
引用
收藏
页数:10
相关论文
共 42 条
[1]   GEANT4-a simulation toolkit [J].
Agostinelli, S ;
Allison, J ;
Amako, K ;
Apostolakis, J ;
Araujo, H ;
Arce, P ;
Asai, M ;
Axen, D ;
Banerjee, S ;
Barrand, G ;
Behner, F ;
Bellagamba, L ;
Boudreau, J ;
Broglia, L ;
Brunengo, A ;
Burkhardt, H ;
Chauvie, S ;
Chuma, J ;
Chytracek, R ;
Cooperman, G ;
Cosmo, G ;
Degtyarenko, P ;
Dell'Acqua, A ;
Depaola, G ;
Dietrich, D ;
Enami, R ;
Feliciello, A ;
Ferguson, C ;
Fesefeldt, H ;
Folger, G ;
Foppiano, F ;
Forti, A ;
Garelli, S ;
Giani, S ;
Giannitrapani, R ;
Gibin, D ;
Cadenas, JJG ;
González, I ;
Abril, GG ;
Greeniaus, G ;
Greiner, W ;
Grichine, V ;
Grossheim, A ;
Guatelli, S ;
Gumplinger, P ;
Hamatsu, R ;
Hashimoto, K ;
Hasui, H ;
Heikkinen, A ;
Howard, A .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 506 (03) :250-303
[2]   Detecting Upward Directed Charged Particle Fluxes in the Mars Science Laboratory Radiation Assessment Detector [J].
Appel, J. K. ;
Koeehler, J. ;
Guo, J. ;
Ehresmann, B. ;
Zeitlin, C. ;
Matthiae, D. ;
Lohf, H. ;
Wimmer-Schweingruber, R. F. ;
Hassler, D. ;
Brinza, D. E. ;
Boehm, E. ;
Boettcher, S. ;
Martin, C. ;
Burmeister, S. ;
Reitz, G. ;
Rafkin, S. ;
Posner, A. ;
Peterson, J. ;
Weigle, G. .
EARTH AND SPACE SCIENCE, 2018, 5 (01) :2-18
[3]  
Byrne C.J., 2020, TRAVELS CURIOSITY, P69, DOI [10.1007/978-3%2D030-53805-7%5F7, DOI 10.1007/978-3%2D030-53805-7%5F7]
[4]   CIR morphology, turbulence, discontinuities, and energetic particles -: Report of Working Group 2 [J].
Crooker, NU ;
Gosling, JT ;
Bothmer, V ;
Forsyth, RJ ;
Gazis, PR ;
Hewish, A ;
Horbury, TS ;
Intriligator, DS ;
Jokipii, JR ;
Kóta, J ;
Lazarus, AJ ;
Lee, MA ;
Lucek, E ;
Marsch, E ;
Posner, A ;
Richardson, IG ;
Roelof, EC ;
Schmidt, JM ;
Siscoe, GL ;
Tsurutani, BT ;
Wimmer-Schweingruber, RF .
SPACE SCIENCE REVIEWS, 1999, 89 (1-2) :179-220
[5]   Predictions of space radiation fatality risk for exploration missions [J].
Cucinotta, Francis A. ;
To, Khiet ;
Cacao, Eliedonna .
LIFE SCIENCES IN SPACE RESEARCH, 2017, 13 :1-11
[6]   THEMIS observes possible cave skylights on Mars [J].
Cushing, G. E. ;
Titus, T. N. ;
Wynne, J. J. ;
Christensen, P. R. .
GEOPHYSICAL RESEARCH LETTERS, 2007, 34 (17)
[7]   Radiation Environment and Doses on Mars at Oxia Planum and Mawrth Vallis: Support for Exploration at Sites With High Biosignature Preservation Potential [J].
Da Pieve, F. ;
Gronoff, G. ;
Guo, J. ;
Mertens, C. J. ;
Neary, L. ;
Gu, B. ;
Koval, N. E. ;
Kohanoff, J. ;
Vandaele, A. C. ;
Cleri, F. .
JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2021, 126 (01)
[8]   Modelling the surface and subsurface Martian radiation environment: Implications for astrobiology [J].
Dartnell, L. R. ;
Desorgher, L. ;
Ward, J. M. ;
Coates, A. J. .
GEOPHYSICAL RESEARCH LETTERS, 2007, 34 (02)
[9]   Modeling of the Martian environment for radiation analysis [J].
De Angelis, G. ;
Wilson, J. W. ;
Clowdsley, M. S. ;
Qualls, G. D. ;
Singleterry, R. C. .
RADIATION MEASUREMENTS, 2006, 41 (9-10) :1097-1102
[10]   Influence of higher atmospheric pressure on the Martian radiation environment: Implications for possible habitability in the Noachian epoch [J].
Ehresmann, B. ;
Burmeister, S. ;
Wimmer-Schweingruber, R. F. ;
Reitz, G. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2011, 116