The inverse problem for collinear central configurations

被引:32
作者
Albouy, A [1 ]
Moeckel, R [1 ]
机构
[1] Inst Mecan Celeste, F-75014 Paris, France
关键词
inverse problem; n-body problem; central configuration;
D O I
10.1023/A:1008345830461
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We consider the problem: given a collinear configuration of n bodies, find the masses which make it central. We prove that for n less than or equal to 6, each configuration determines a one-parameter family of masses (after normalization of the total mass). The parameter is the center of mass when n is even and the square of the angular velocity of the corresponding circular periodic orbit when n is odd. The result is expected to be true for any n.
引用
收藏
页码:77 / 91
页数:15
相关论文
共 8 条
[1]  
DZIOBEK O, 1962, MATH THEORIES PLANET, P70
[2]  
LAPLACE PS, 1789, MEMOIRES ACAD SCI PA, V11, P553
[3]   Permanent configurations in the problem of four bodies [J].
MacMillan, W. D. ;
Bartky, Walter .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1932, 34 (1-4) :838-875
[4]  
MARCHAL C, 1999, THREE BODY PROBLEM, P44
[5]  
MOULTON FR, 1910, ANN MATH, V2, P1
[6]   STATIONARY CONFIGURATIONS OF POINT VORTICES [J].
ONEIL, KA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 302 (02) :383-425
[7]  
WILLIAMS WL, 1938, T AM MATH SOC, V44, P53
[8]  
Wintner A., 1941, PRINCETON MATH SERIE, V5