Numerical schemes for three-dimensional irregular shape quantum dots over curvilinear coordinate systems

被引:14
|
作者
Hwang, Tsung-Min
Wang, Wei-Cheng
Wang, Weichung
机构
[1] Natl Taiwan Univ, Dept Math, Taipei 10617, Taiwan
[2] Natl Taiwan Normal Univ, Dept Math, Taipei 116, Taiwan
[3] Natl Tsing Hua Univ, Dept Math, Hsinchu 300, Taiwan
关键词
three-dimensional irregular shape quantum dot; The Schrodinger equation; bound state energies and wave functions; curvilinear coordinate system; finite difference; large-scale generalized eigenvalue problem;
D O I
10.1016/j.jcp.2007.04.022
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this article, we present efficient and stable numerical schemes to simulate three-dimensional quantum dot with irregular shape, so that we can compute all the bound state energies and associated wave functions. A curvilinear coordinate system that fits the target quantum dot shape is first determined. Three finite difference discretizations of the Schrodinger equation are then developed on the original and the skewed curvilinear coordinate system. The resulting large-scale generalized eigenvalue systems are solved by a modified Jacobi-Davidson method. Intensive numerical experiments show that the scheme using both grid points on the original and skewed curvilinear coordinate system can converge to the eigenpairs quickly and stably with second-order accuracy. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:754 / 773
页数:20
相关论文
共 50 条
  • [41] A three-dimensional pollutant transport model in orthogonal curvilinear and sigma coordinate system for Pearl river estuary
    Chau, KW
    Jiang, YW
    INTERNATIONAL JOURNAL OF ENVIRONMENT AND POLLUTION, 2004, 21 (02) : 188 - 198
  • [42] Numerical analysis of various artificial damping schemes in a three-dimensional numerical wave tank
    Kim, Min Woo
    Koo, Weoncheol
    Hong, Sa Young
    OCEAN ENGINEERING, 2014, 75 : 165 - 173
  • [43] Numerical method to calculate three-dimensional incompressible viscous flow in rotating system using boundary-fitted curvilinear coordinate transformation technique
    Umegaki, Kikuo
    Nippon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B, 1988, 54 (505): : 2399 - 2407
  • [44] Transition from two-dimensional to three-dimensional quantum confinement in semiconductor quantum wires/quantum dots
    Zhu, Q.
    Karlsson, K. F.
    Pelucchi, E.
    Kapon, E.
    NANO LETTERS, 2007, 7 (08) : 2227 - 2233
  • [45] Numerical Simulation of Separated Flow over Three-dimensional Complex Shape Bodies with Some Vortex Method
    Aparinov, A. A.
    Setukha, A. V.
    Zhelannikov, A. I.
    APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES (AMITANS '14), 2014, 1629 : 69 - 76
  • [46] Lasing Oscillation in a Three-Dimensional Photonic Crystal Nanocavity with Quantum Dots
    Tandaechanurat, A.
    Ishida, S.
    Guimard, D.
    Bordel, D.
    Nomura, M.
    Iwamoto, S.
    Arakawa, Y.
    2010 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO) AND QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE (QELS), 2010,
  • [47] Three-dimensional binary superlattices of magnetic nanocrystals and semiconductor quantum dots
    Redl, FX
    Cho, KS
    Murray, CB
    O'Brien, S
    NATURE, 2003, 423 (6943) : 968 - 971
  • [48] Coexistence of planar and three-dimensional quantum dots in CdSe/ZnSe structures
    Strassburg, M
    Deniozou, T
    Hoffmann, A
    Heitz, R
    Pohl, UW
    Bimberg, D
    Litvinov, D
    Rosenauer, A
    Gerthsen, D
    Schwedhelm, S
    Lischka, K
    Schikora, D
    APPLIED PHYSICS LETTERS, 2000, 76 (06) : 685 - 687
  • [49] Towards quantitative three-dimensional characterisation of buried InAs quantum dots
    Kadkhodazadeh, S.
    Semenova, E. S.
    Schubert, M.
    Thuvander, M.
    Stiller, K. M.
    Yvind, K.
    Dunin-Borkowski, R. E.
    17TH INTERNATIONAL CONFERENCE ON MICROSCOPY OF SEMICONDUCTING MATERIALS 2011, 2011, 326
  • [50] Spontaneous magnetization and electron momentum density in three-dimensional quantum dots
    Saniz, R
    Barbiellini, B
    Denison, AB
    Bansil, A
    PHYSICAL REVIEW B, 2003, 68 (16)