Numerical schemes for three-dimensional irregular shape quantum dots over curvilinear coordinate systems

被引:14
|
作者
Hwang, Tsung-Min
Wang, Wei-Cheng
Wang, Weichung
机构
[1] Natl Taiwan Univ, Dept Math, Taipei 10617, Taiwan
[2] Natl Taiwan Normal Univ, Dept Math, Taipei 116, Taiwan
[3] Natl Tsing Hua Univ, Dept Math, Hsinchu 300, Taiwan
关键词
three-dimensional irregular shape quantum dot; The Schrodinger equation; bound state energies and wave functions; curvilinear coordinate system; finite difference; large-scale generalized eigenvalue problem;
D O I
10.1016/j.jcp.2007.04.022
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this article, we present efficient and stable numerical schemes to simulate three-dimensional quantum dot with irregular shape, so that we can compute all the bound state energies and associated wave functions. A curvilinear coordinate system that fits the target quantum dot shape is first determined. Three finite difference discretizations of the Schrodinger equation are then developed on the original and the skewed curvilinear coordinate system. The resulting large-scale generalized eigenvalue systems are solved by a modified Jacobi-Davidson method. Intensive numerical experiments show that the scheme using both grid points on the original and skewed curvilinear coordinate system can converge to the eigenpairs quickly and stably with second-order accuracy. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:754 / 773
页数:20
相关论文
共 50 条
  • [31] Electrical transport in three-dimensional ensembles of silicon quantum dots
    Balberg, I.
    Jedrzejewski, J.
    Savir, E.
    PHYSICAL REVIEW B, 2011, 83 (03)
  • [32] Imaging single quantum dots in three-dimensional photonic crystals
    Barth, Michael
    Schuster, Roman
    Gruber, Achim
    Cichos, Frank
    PHYSICAL REVIEW LETTERS, 2006, 96 (24)
  • [33] Three-dimensional phononic nanocrystal composed of ordered quantum dots
    Wen, Yu-Chieh
    Sun, Jia-Hong
    Dais, Christian
    Gruetzmacher, Detlev
    Wu, Tsung-Tsong
    Shi, Jin-Wei
    Sun, Chi-Kuang
    APPLIED PHYSICS LETTERS, 2010, 96 (12)
  • [34] Prediction method for offset compensation on three-dimensional mandrel with spatial irregular shape
    Meng, Zhuo
    Yao, Lingling
    Bu, Jianqiu
    Sun, Yize
    JOURNAL OF INDUSTRIAL TEXTILES, 2021, 50 (08) : 1205 - 1224
  • [35] The Shape Identification Problem in Estimating the Geometry of A Three-Dimensional Irregular Internal Cavity
    Huang, Cheng-Hung
    Chen, Chi-An
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2008, 36 (01): : 1 - 21
  • [36] Fabrication of three-dimensional printed customized bolus for the irregular shape of the outer ear
    Baeza Trujillo, M.
    Gomez, G.
    Mateos, J. C.
    Rivas, J. A.
    Velazquez, S.
    Simon, J.
    Mesta Ortega, D.
    Flores Carrion, M. A.
    Ortiz Gordillo, M. J.
    Gomez-Cia, T.
    Lopez Guerra, J. L.
    RADIOTHERAPY AND ONCOLOGY, 2018, 127 : S1201 - S1201
  • [37] The numerical reconstruction for three-dimensional shape using digital holograms
    Jin, Hongzhen
    Ma, Lihong
    Li, Yong
    Tian, Qing
    Wang, Hui
    HOLOGRAPHY AND DIFFRACTIVE OPTICS III, 2008, 6832
  • [38] Numerical reconstruction of digital holograms for three-dimensional shape measurement
    Ma, LH
    Wang, H
    Li, Y
    Jin, HZ
    JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS, 2004, 6 (04): : 396 - 400
  • [39] Shape synchronization control for three-dimensional chaotic systems
    Huang, Yuanyuan
    Wang, Yinhe
    Chen, Haoguang
    Zhang, Siying
    CHAOS SOLITONS & FRACTALS, 2016, 87 : 136 - 145
  • [40] Shape of attractors for three-dimensional dissipative dynamical systems
    Neukirch, S
    Giacomini, H
    PHYSICAL REVIEW E, 2000, 61 (05): : 5098 - 5107