Numerical schemes for three-dimensional irregular shape quantum dots over curvilinear coordinate systems

被引:14
|
作者
Hwang, Tsung-Min
Wang, Wei-Cheng
Wang, Weichung
机构
[1] Natl Taiwan Univ, Dept Math, Taipei 10617, Taiwan
[2] Natl Taiwan Normal Univ, Dept Math, Taipei 116, Taiwan
[3] Natl Tsing Hua Univ, Dept Math, Hsinchu 300, Taiwan
关键词
three-dimensional irregular shape quantum dot; The Schrodinger equation; bound state energies and wave functions; curvilinear coordinate system; finite difference; large-scale generalized eigenvalue problem;
D O I
10.1016/j.jcp.2007.04.022
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this article, we present efficient and stable numerical schemes to simulate three-dimensional quantum dot with irregular shape, so that we can compute all the bound state energies and associated wave functions. A curvilinear coordinate system that fits the target quantum dot shape is first determined. Three finite difference discretizations of the Schrodinger equation are then developed on the original and the skewed curvilinear coordinate system. The resulting large-scale generalized eigenvalue systems are solved by a modified Jacobi-Davidson method. Intensive numerical experiments show that the scheme using both grid points on the original and skewed curvilinear coordinate system can converge to the eigenpairs quickly and stably with second-order accuracy. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:754 / 773
页数:20
相关论文
共 50 条
  • [1] Numerical calculation of the electronic structure for three-dimensional quantum dots
    Voss, H
    COMPUTER PHYSICS COMMUNICATIONS, 2006, 174 (06) : 441 - 446
  • [2] Paraxial electron optics in the three-dimensional curvilinear coordinate system
    Nie, Shiqi
    Lin, Shuquan
    Huang, Baolin
    Wuli Xuebao/Acta Physica Sinica, 47 (07): : 1090 - 1100
  • [3] Influence of quantum dot shape on energy spectra of three-dimensional quantum dots superlattices
    Bilynskyi, I., V
    Leshko, R. Ya
    Bandura, H. Ya
    PHYSICS AND CHEMISTRY OF SOLID STATE, 2020, 21 (04): : 584 - 590
  • [4] Coordinate conditions in three-dimensional numerical relativity
    Balakrishna, J
    Daues, G
    Seidel, E
    Suen, WM
    Tobias, M
    Wang, E
    CLASSICAL AND QUANTUM GRAVITY, 1996, 13 (12) : L135 - L142
  • [5] Three-dimensional compositional analysis of quantum dots
    Harvey, A
    Davock, H
    Dunbar, A
    Bangert, U
    Goodhew, PJ
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2001, 34 (04) : 636 - 644
  • [6] Three-dimensional tracking of individual quantum dots
    Lessard, Guillaume A.
    Goodwin, Peter M.
    Werner, James H.
    APPLIED PHYSICS LETTERS, 2007, 91 (22)
  • [7] Orbital magnetism of three-dimensional quantum dots
    Oh, S
    Ryu, JY
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 1996, 29 (03) : 334 - 337
  • [8] Orbital magnetism in three-dimensional quantum dots
    Suzuki, T
    Imamura, H
    Hayashi, M
    Ebisawa, H
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2002, 71 (05) : 1242 - 1245
  • [9] Electronic structure of three-dimensional quantum dots
    T. Vorrath
    R. Blümel
    The European Physical Journal B - Condensed Matter and Complex Systems, 2003, 32 : 227 - 235
  • [10] Three-dimensional model for interdiffused quantum dots
    Gunawan, O.
    Djie, H. S.
    Ooi, B. S.
    INTERNATIONAL JOURNAL OF NANOSCIENCE, VOL 4, NO 4, 2005, 4 (04): : 683 - 688